350 rub
Journal Radioengineering №6 for 2022 г.
Article in number:
The antenna system of target information transmission radio line of the spacecraft: ways of constructions
Type of article: overview article
DOI: https://doi.org/10.18127/j00338486-202206-14
UDC: 621.396.67
Authors:

E.V. Ovchinnikova1, S.G. Kondratieva2, P.A. Shmachilin3,
Nguen Dinh To
4, T.A. Trofimova5, E.V. Gadzhiev6
1-6 Moscow Aviation Institute (National Research University) (Moscow, Russia)
2,3 Peoples Friendship University of Russia (Moscow, Russia)
6 JC “VNIIEM Corporation” (Moscow, Russia)

Abstract:

A target information transmission radio line is used both as part of large spacecraft and as part of small spacecraft of any purpose.

The paper considers the ways of constructing antenna systems of the target information transmission radio line of spacecraft.

The review of scientific and technical literature regarding the construction of on-board antenna systems of domestic (for example, the small spacecraft "Canopus-V" No. 1 and the large spacecraft "Meteor-M" No. 2-2) and foreign spacecraft (for example, the small spacecraft "TechDemoSat-1") is given. The composition of the applied antenna system of the target information transmission radio line is shown.

In the course of analyzing the presented review of scientific and technical literature and taking into account modern requirements for the construction of high-speed radio lines for promising spacecraft, further ways of constructing an antenna system for target information transmission radio line are identified and formulated.

One of the ways is to use a single emitter. The paper shows the use of mirror, spiral, horn antennas as on-board antennas of the target information transmission radio line. The energy parameters of the antennas used are given, such as the voltage standing–wave ratio, the radiation pattern, the gain coefficient and the axial ratio. The advantages of horn antennas, such as high reliability and electrical strength, wide working band, low losses, etc. are determined.

Another option is to use an antenna feeder device with mechanical scanning. The paper shows the use of various types of domestic and foreign drives for space applications. The requirements for the drive of the on-board antenna feeder device of the target information transmission radio line are formulated. The possibility of wide-angle mechanical scanning is shown.

In turn, the option of using antenna arrays is also considered. The paper shows the use of phased antenna arrays, active phased antenna arrays, as well as digital phased antenna arrays. The energy parameters of the antenna arrays considered are given, such as the voltage standing–wave ratio, the radiation pattern, the gain coefficient and the axial ratio. The expediency of studying the characteristics of antenna arrays in relation to the target information transmission radio line of spacecraft, as well as the need to determine ways to build multi-element antenna systems, is shown.

Thus, this paper shows the following ways of constructing an antenna system of the target information transmission radio line:

  • the use of a single emitter;
  • application of antenna feeder device with mechanical scanning;

the use of antenna arrays.

Pages: 109-121
For citation

Ovchinnikova E.V., Kondratieva S.G., Shmachilin P.A., Nguen Dinh To, Trofimova T.A., Gadzhiev E.V. The antenna system of target information transmission radio line of the spacecraft: ways of constructions. Radiotekhnika. 2022. V. 86. № 6. P. 109−121. DOI: https://doi.org/10.18127/j00338486-202206-14 (In Russian)

References
  1. Prigoda B.A., Kokun'ko V.S. Antenny letatel'nyh apparatov. M.: Voenizdat. 1964. 120 s. (In Russian).
  2. Gadzhiev E., Generalov A., Zhukov A., et al. Application of spiral antennas for perspective vehicle-board systems and complexes. Proceedings 5th International Conference on Engineering and Telecommunication «EnT-MIPT 2018». Moscow. 2018. P. 91-93. DOI: 10.1109/EnT-MIPT.2018.00027.
  3. Gadzhiev E., Generalov A., Salikhov M., et al. Application of dipole antennas for perspective vehicle-board systems and complexes.
    2019 International Conference on Engineering and Telecommunication «EnT 2019». Dolgoprudny. 2019. P. 9030543.
    DOI: 10.1109/EnT47717.2019.9030543.
  4. Generalov A.G., Gadzhiev Je.V., Salihov M.R. Primenenie spiral'nyh antenn dlja bortovyh sistem i kompleksov. Trudy MAI. 2019. № 106.
    S. 7. [Jelektronnyj resurs] http://trudymai.ru/published.php?ID=105685 (data obrashhenija: 18.02.2022 g.) (In Russian).
  5. Ovchinnikova E.V., To N.D., Kondrat'eva S., et al. Application of horn antennas for perspective vehicle-board systems and complexes.
    2020 International Conference Engineering and Telecommunication «En and T - 2020». Dolgoprudny. 2020. P. 9431308.
    DOI: 10.1109/EnT50437.2020.9431308.
  6. Gutkin L.S. Proektirovanie radiosistem i radioustrojstv. M.: Radio i svjaz'. 1986. 288 s. (In Russian).
  7. Generalov A.G., Gadzhiev Je.V. Sostojanie i perspektivy razvitija bortovyh antenno-fidernyh ustrojstv radiolinii peredachi celevoj informacii. Radiotehnicheskie i telekommunikacionnye sistemy. 2018. № 2 (30). S. 44–52 (In Russian).
  8. Ovchinnikova E.V., Kondrat'eva S.G., Shmachilin P.A. i dr. Antennye sistemy radiolinii peredachi informacii kosmicheskih apparatov: sostojanie i perspektivy razvitija. Radiotehnika. 2021. T. 85. № 3. S. 86-95. DOI: 10.18127/j00338486-202103-09 (In Russian).
  9. Bahtin A.A., Omel'janchuk E.V., Semenova A.Ju. Analiz sovremennyh vozmozhnostej organizacii sverhvysokoskorostnyh sputnikovyh radiolinij. Trudy MAI. 2017. № 96. [Jelektronnyj resurs] http://trudymai.ru/published.php?ID=85828 (data obrashhenija: 18.02.2022 g.) (In Russian).
  10. Bekrenev O.V.; Goncharov A.K., Martynov S.I. Antennye sistemy priemnyh kompleksov dlja osnashhenija priemnyh stancij ETRIS. Materialy konf. «Iosif'janovskie chtenija 2017». 2017. S. 240–241 (In Russian).
  11. Makridenko L.A., Volkov S.N., Gorbunov A.V. i dr. KA «Kanopus-V» № 1 - pervyj rossijskij malyj kosmicheskij apparat vysokodetal'nogo distancionnogo zondirovanija Zemli novogo pokolenija. Voprosy jelektromehaniki. Trudy VNIIJeM. 2017. T. 156. № 1. S. 10-20 (In Russian).
  12. Makridenko L.A., Volkov S.N., Gorbunov A.V., Salihov R.S., Hodnenko V.P. Nauchnyj kosmicheskij apparat «Lomonosov». Voprosy jelektromehaniki. Trudy VNIIJeM. 2017. T. 161. S. 28–44. (In Russian).
  13. Makridenko L.A., Volkov S.N., Gorbunov A.V. i dr. Istorija sozdanija kosmicheskogo kompleksa «Kanopus-V» i Belorusskogo kosmicheskogo kompleksa. Voprosy jelektromehaniki. Trudy VNIIJeM. 2019. T. 169. № 2. S. 39-44 (In Russian).
  14. Gadzhiev Je.V., Zagraeva A.V. Konstrukcii malyh kosmicheskih apparatov. M.: Izd. «Pero». 2021. S. 32-33 (In Russian).
  15. Zaharenko A.B., Fedotov A.Ju., Gadzhiev Je.V., Telepnev P.P. Perspektivy razvitija bortovoj antennoj sistemy kosmicheskih apparatov serii «Meteor-M». Voprosy jelektromehaniki. Trudy VNIIJeM. 2021. T. 182. № 3. S. 19-23 (In Russian).
  16. Generalov A.G., Gadzhiev Je.V., Salihov M.R. Primenenie spiral'noj antenny v kachestve bortovoj antenny radiolinii peredachi celevoj informacii. Vseross. otkrytye Armandovskie chtenija «Sovremennye problemy distancionnogo zondirovanija, radiolokacii, rasprostranenija i difrakcii voln». Murom: Muromskij in-t (filial) GOU VPO «Vladimirskij gosudarstvennyj universitet im. A.G. i N.G. Stoletovyh». 2019.
    S. 549-553 (In Russian).
  17. Gadzhiev Je.V., Tumanov M.V., Generalov A.G. Primenenie spiral'nyh antenn dlja bortovyh sistem i kompleksov. Tezisy 17-j Mezhdunar. konf. «Aviacija i kosmonavtika - 2018». M.: Tipografija «Ljuksor». 2018. S. 248-249 (In Russian).
  18. Salihov M.R. Primenenie rupornoj antenny v kachestve bortovoj antenny radiolinii peredachi celevoj informacii. Sb. dokl. XLV Mezhdunar. molodezhnoj nauch. konf. «Gagarinskie chtenija - 2019». Moskva, Barnaul, Ahtubinsk: MAI (nacional'nyj issledovatel'skij universitet). 2019. S. 526-527 (In Russian).
  19. Ovchinnikova E.V., Kondrat'eva S.G., Shmachilin P.A. i dr. Primenenie rupornoj antenny v kachestve bortovoj antenny radiolinii peredachi celevoj informacii. Voprosy jelektromehaniki. Trudy VNIIJeM. 2019. T. 173. № 6. S. 41-50 (In Russian).
  20. Martynov S.I., Goncharov A.K., Tabenkov A.V. Analiz jenergeticheskih harakteristik bortovoj apparatury radiolinij peredachi informacii KA DZZ - ZEMLJa. Tezisy dokl. VI Mezhdunarodnoj nauch.-tehnich. konf. «Aktual'nye problemy sozdanija kosmicheskih sistem distancionnogo zondirovanija Zemli». M.: AO «Korporacija «VNIIJeM». 2018. S. 79 (In Russian).
  21. Gadzhiev Je.V., Generalov A.G. K voprosu o postroenii ostronapravlennoj perenacelivaemoj bortovoj antenny kosmicheskih apparatov. Tezisy dokladov Vtoroj molodezhnoj konf. «Innovacionnaja dejatel'nost' v nauke i tehnike. Jelektromehanika, avtomatika i robototehnika». Istra: NII jelektromehaniki. 2018. S. 33-36 (In Russian).
  22. Jusov A.V., Kozlov S.A., Ustinova E.A., Vasil'chenko D.V., Arhipov M.Ju. Krivovakuumnyj geksapod s submikronnym privodom dlja temperatur 4,2 K. Materialy konf. «Iosif'janovskie chtenija - 2017». 2017. S. 231–233 (In Russian).
  23. Gecha V.Ja., Zaharenko A.B., Martynova S.A., Krasova N.A. Optimizacija glavnyh razmerov jelektrodvigatelja dlja privoda antenno-fidernoj sistemy. Voprosy jelektromehaniki. Trudy VNIIJeM. 2016. T. 151. № 2. S. 8-11 (In Russian).
  24. Patent H02K19/10. Sinhronnyj reaktivnyj jelektrodvigatel'. Dul'cev A.A., Martynova S.A. Zaharenko A.B.: AO «Korporacija «VNIIJeM».
    № 2551640 (RF); Zajavka № 2014116841; Opubl. 27.05.2015. Bjull. № 15 (In Russian).
  25. Akcionernoe obshhestvo «Nauchno-issledovatel'skij institut tochnyh priborov» (AO «NIITP») [Jelektronnyj resurs] http://www.niitp.ru/activities/34-vrl (data obrashhenija: 18.02.2022 g.) (In Russian).
  26. Ferris M., Phillips N. The use and advancement of an affordable, adaptable antenna pointing mechanism. 14th European Space Mechanisms & Tribology Symposium – ESMATS 2011’ Constance. Germany. 28–30 September 2011. P. 227–234.
  27. Thales Group. Thales Alenia Space. Avionics products. [Jelektronnyj resurs] URL: https://www.thalesgroup.com/en/avionics-aocs (data obrashhenija: 18.02.2022 g.).
  28. NEC Space Systems. Products. [Jelektronnyj resurs] URL: http://www.nec.com/en/global/solutions/space/ (data obrashhenija: 18.02.2022 g.).
  29. Generalov A.G., Gadzhiev Je.V. K voprosu o postroenii ostronapravlennoj perenacelivaemoj bortovoj antenny kosmicheskih apparatov. Voprosy jelektromehaniki. Trudy VNIIJeM. 2018. T. 164. № 3. S. 26-31 (In Russian).
  30. Voskresenskiy D.I., Ovchinnikova E.V., Kondratieva S.G., Shmachilin P.A. Digital beam forming by means of matrix Fourier transform method. 22nd International Crimean Conference Microwave and Telecommunication Technology (CriMiCo 2012). Conference Proceedings. Sevastopol, Crimea: Sevastopol National Technical University. 2012. P. 455-456.
  31. Akopjan A.G. Vozmozhnosti ispolnenija cifrovogo diagrammoobrazovanija dlja antennyh reshetok na baze oborudovanija National Instruments. Obrazovatel'nye, nauchnye i inzhenernye prilozhenija v srede Lab VIEW i tehnologii National Instruments. Sb. trudov VIII Mezhdunar. nauch.-praktich. konf. M.: RUDN. 2009. S. 249-251 (In Russian).
  32. Gus'kov Ju.N., Zhiburtovich N.Ju. Tehnologija razrabotki BRLS s AFAR. Voprosy radiojelektroniki. Serija RLT. 2014. Vyp. 3. S. 25. (In Russian).
  33. Shmachilin P.A. Bortovye priemnye CAFAR SVCh: Avtoref. diss. … kand. tehn. nauk. 2011 (In Russian).
  34. Voskresenskiy D.I., Ovchinnikova E.V., Kondrateva S.G., Shmachilin P.A. Onboard active antenna arrays with digital signal processing. Prospects of development. 21st International Crimean Conference: Microwave and Telecommunication Technology. Conference Proceedings (CriMiCo - 2011). Sevastopol. Crimea. 2011. P. 17-18 (In Russian).
  35. Ovchinnikova E.V., Sokolov A.A. Dvuhdiapazonnaja antennaja reshetka s kosekansnoj diagrammoj napravlennosti. Antenny. 2011.
    № 4(167). S. 14-19 (In Russian).
  36. Ovchinnikova E.V., Gadzhiev Je.V., Nguen D.T. i dr. Volnovodnaja antennaja reshetka X-diapazona s jellipticheskoj poljarizaciej.
    SVCh-tehnika i telekommunikacionnye tehnologii. 2021. № 3. S. 114-115 (In Russian).
  37. Ovchinnikova E.V. Bortovye FAR SVCh-diapazona. Monografija. Pod. red. D.I. Voskresenskogo. M.: MAI. 2016. 163 s. (In Russian).
  38. Ovchinnikova E.V., Vasil'ev O.V., Kuljastov M.M. Kol'cevaja koncentricheskaja antennaja reshetka iz volnovodnyh izluchatelej. Antenny. 2015. № 8 (In Russian).
  39. Ovchinnikova E.V., Zykov L.S., Shmachilin P.A., Kondrat'eva S.G. The on-board wide angle scanning antenna array. 8th European Conference on Antennas and Propagation (EuCAP - 2014). The Hague: Institute of Electrical and Electronics Engineers Inc. 2014. P. 1820-1822. DOI: 10.1109/EuCAP.2014.6902149.
  40. Dvurechenskij V.D., Telepnev P.P., Fedotov A.Ju. Sputnikovaja antenna s jellipticheskoj poljarizaciej. Voprosy jelektromehaniki. Trudy VNIIJeM. 2013. T. 134. № 3. S. 27-30 (In Russian).
  41. Dvurechenskij V.D., Telepnev P.P., Fedotov A.Ju. Linejnaja antenna s jellipticheskoj poljarizaciej dlja kosmicheskih apparatov. Voprosy jelektromehaniki. Trudy VNIIJeM. 2017. T. 161. № 6. S. 17-19 (In Russian).
  42. Qin F., et al. Wideband circularly polarized Fabry–Perot antenna [antenna applications corner]. IEEE Antennas Propagat. Mag. Oct. 2015. V. 57. № 5. Р. 127–135.
  43. Yegorov E.N., Likhtenvald V.V., Sbitnev G.V. The system of Active Phased Array Antennas for satellite relay "Kupon". Proceedings of the XVIII Moscow International Conference on Antenna Theory and Technology. Moscow. 1998. Р. 55-61.
  44. Sakura T., Aruga H., Kitao S., Nakaguro H., Akaishi A., Kadowaki N., Araki T. Development of Ka-band Multibeam Active Phased Array Antenna for Gigabit Satellite. Proceedings of the Fifth Ka-band Utilization Conference. Taormina. Italy. 1999. Р. 515-522.
  45. Masanobu Y., Takumi H., Tomonori K., Masai S. On-board evaluation results of active phased array antenna for winds Satellite, Transactions of the Japanese Society for Artificial Intelligence. Aerospace Technology Japan. 2011. V. 8. P. 13–18.
Date of receipt: 21.03.2022
Approved after review: 01.04.2022
Accepted for publication: 04.06.2022