350 rub
Journal Radioengineering №5 for 2022 г.
Article in number:
Designing of a multi-frequency vibrator antenna with parallel LC-circuits loads
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202205-17
UDC: 621.396.673
Authors:

S.N. Boyko1, A.M. Egiazaryan2, O.V. Koryshev3, I.M. Trukhachev4

1-4 Branch of JSC “URSC” – “ISDE” (Moscow Russia)

Abstract:

Problem definition. Many VHF communication devices include multi-frequency vibrator antennas, among which a special place is occupied by the vibrator antennas with reactive loads as the most compact and simplest to produce. However, inductive loads usually used in practice don’t provide current cut-off at higher operating frequencies, which results in deformations of radiation patterns. There is a need to apply resonant loads (LC-circuit) in antenna design. Previously, authors developed a methodology for calculating antennas with reactive loads based on serial application of the long lines theory to the various parts of the vibrator antenna both for determination the input characteristics, and for calculating current distribution along the vibrator and far-field radiation patterns. However, it turned out that a direct use of this methodology for calculating characteristics of the vibrator antenna with resonant loads is impossible.

Purpose. The purpose of this paper is to adapt the methodology for calculating multi-frequency vibrator antenna characteristics (input impedance, VSWR, current distribution over the vibrator, far-field radiation patterns), which is based on serial application of the long lines theory to the various parts of the vibrator antenna, in case of using resonant loads (LC-circuits).

Results. This paper explores an influence of shunt capacitance and inductance caused by insertion of parallel LC-circuit into a vibrator gap. The formulas for calculating shunt capacitance and inductance of the vibrator antenna are given. An equivalent scheme for the design the vibrator antenna with single LC-circuit is shown. Also this paper contains the calculation of input impedance, VSWR, current distribution over the vibrator and radiation patterns, based on proposed equivalent scheme. An experimental verification of calculated data (VSWR and far-field radiation pattern) is done. An additional matching circuit for the vibrator antenna with LC-circuit load is suggested and realized. Applicability of proposed methodology for the design of the multi-frequency vibrator antennas with parallel LC-circuits is proved by analyzing calculated and experimental data.

Practical significance. The results can be used to design the multi-frequency VHF vibrator antennas with resonant loads (LC-circuits), which have the identical radiation patterns at all operating frequencies.

Pages: 145-157
For citation

Boyko S.N., Egiazaryan A.M., Koryshev O.V., Trukhachev I.M. Designing of a multi-frequency vibrator antenna with parallel LC-circuits loads. Radiotekhnika. 2022. V. 86. № 5. P. 145−157. DOI: https://doi.org/10.18127/j00338486-202205-17 (In Russian)

References
  1. Petrov A.S., Kovaleva M.V. Soglasovanie vkhodnogo impedansa korotkogo monopolya s volnovym soprotivleniem trakta pri pomoshchi G-zvena, sostoyashchego iz induktivnostey s konechnoy dobrotnostyu. Radiotekhnika i elektronika. 2012. T. 57. № 4. S. 418–421
    (In Russian).
  2. Petrov A.S., Kovaleva M.V. Soglasovanie kompleksnogo soprotivleniya s fidernym traktom pri pomoshchi G-zvenev, sostoyashchikh iz reaktivnykh LC-elementov s konechnoy dobrotnostyu. Radiotekhnika i elektronika. 2012. T. 57. № 6. S. 624–631 (In Russian).
  3. Ovsyannikov V.V. Vibratornye antenny s reaktivnymi nagruzkami. M.: Radio i svyaz. 1985. 120 s. (In Russian).
  4. Bobryshev A.M., Uskov G.K., Kondratev D.P., Neskorodov S.E. Vsenapravlennaya shirokopolosnaya vibratornaya antenna. Antenny. 2019. № 8. S. 5–11. DOI: 10.18127/j03209601-201908-01. (In Russian).
  5. Boyko S.N., Kovalyova M.V., Petrov A.S. Trekhchastotnaya samoletnaya antenna dlya sistemy COSPAS–SARSAT. Antenny. 2012. № 7. S. 34–39 (In Russian).
  6. Rotkhammel K. Antenny. Izd. 11-e, ispr. 2019. 417 s. ISBN 978-5-85648-716-8 (In Russian).
  7. Glen J. Seward, Miller E. Multiband antenna system. US 6,107,972, H01Q1/00. Publ. 22.08.2000. Appl. No.: 08/929,142.
  8. Ovsyannikov V.V. Elektricheski malye vibratornye, spiralnye i petlevye antenny. Radiofizika i elektronika. 2017. T. 8(22). № 1. S. 57–67 (In Russian).
  9. Boyko S.N., Zevakin E.A., Koryshev O.V., Trukhachev I.M. Metodika rascheta vkhodnykh kharakteristik vibratornoy antenny s reaktivnymi vklyucheniyami. Radiotekhnika. 2020. Т. 84. № 5(10). S. 53–66. DOI: 10.18127/j00338486-202005(10)-06 (In Russian).
  10. Boyko S.N., Zevakin E.A., Koryshev O.V., Trukhachev I.M. Metodika proektirovaniya spiralnykh vibratornykh antenn s reaktivnymi vklyucheniyami. Antenny. 2020. № 6(268). S. 54–67 (In Russian).
  11. Vychislitelnye metody v elektrodinamike. Pod red. R. Mitry. M.: Izd-vo «Mir». 1977. 488 s. (In Russian)
  12. Neganov V.A., Tabakov D.P., Morozov S.V. Matematicheskaya model shirikopolosnogo tonkoprovolochnogo elektricheskogo vibratora. Fizika volnovykh processov i radiotekhnicheskie sistemy. 2015. T. 18. № 4. S. 34–40 (In Russian).
  13. Neganov V.A., Tabakov D.P. Singulyarnye integralnye predstavleniya elektro-magnitnogo polya kak sredstvo korrektnogo resheniya antennykh zadach. Fizika volnovykh processov i radiotekhnicheskie sistemy. 2014. T. 17. № 3. S. 9–23 (In Russian).
  14. V.M. Weglarz, C.F. Weisser, J.S. Cohen. Triple frequency, split monopole, emergency locator transmitter antenna. US 6,411,260 B1, H01Q 5/01, H01Q 9/32. Publ. 25.06.2002. Appl. No. 08/847,804.
  15. Shchelkunov S.A., Friis G.T. Antenny (Teoriya i praktika). Per. s angl. pod red. L.D. Bakhrakha. M.: Sovetskoe radio. 1955. 604 s.
    (In Russian).
  16. Voytovich N. I., Ershov A.V., Sokolov A.N. UKV vibratornye antenny: Uchebnoe posobie. Chelyabinsk: Izd-vo YUUrGU. 2002. 85 s.
    (In Russian).
Date of receipt: 25.11.2021
Approved after review: 15.12.2021
Accepted for publication: 11.05.2022