350 rub
Journal Radioengineering №5 for 2022 г.
Article in number:
Procedure for estimation of working zone of multistatic passive radar for solving aircraft observation problem
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202205-12
UDC: 621.391
Authors:

A.V. Eliseev1, I.A. Istomina2, A.S. Mitkin3, D.E. Rubailo4

1-4 FSUE «RNIIRS», (Rostov-on-Don, Russia)

1Don State Technical University (Rostov-on-Don, Russia)

Abstract:

Problem statement: A significant increase in the number of aircraft, including unmanned aircraft, requires solving the problem of determining their location in order to ensure flight safety, as well as preventing illegal actions carried out with their help. One of the ways to solve this problem is to use the technology of automatic dependent broadcast-type surveillance (ADS-B). However, an analysis of the implementation of ADS-B technology showed that the 1090ES data transmission line does not provide cyber protection of data, therefore their verification in a ground surveillance system using additional systems or surveillance methods is required. To maintain the effectiveness of the ADS-B technology, it is necessary to search for non-standard and cost-effective ways to verify data transmitted from an aircraft. It is believed that the use of a multistatic passive radar (MSPSR) as part of an aviation surveillance system will eliminate the lack of ADS-B technology data.

The purpose of the work is to evaluate the potential characteristics of a three-position MSPSR.

Results: The relevance of solving the problem of ensuring the verification of ADS-B data is shown. The possibility of using a semi-active multistatic passive radar for this purpose is considered. The substantiation of the main potentially achievable characteristics of the MSPSR is carried out: the range resolution and angular coordinates, the accuracy of measuring the range, the accuracy of determining the location of the aircraft. A hypothetical MSPSR working area is built on the example of a specific airport.

Practical significance: The application of the developed methodology for assessing the potential characteristics of the MSPSR made it possible to obtain appropriate estimates for the system that provides control of the air situation at low altitudes in the area of the Platov airport and, accordingly, the verification of ADS-B data.

Pages: 93-103
For citation

Eliseev A.V., Istomina I.A., Mitkin A.S., Rubailo D.E. Procedure for estimation of working zone of multistatic passive radar for solving aircraft observation problem. Radiotekhnika. 2022. V. 86. № 5. P. 93−103. DOI: https://doi.org/10.18127/j00338486-202205-12 (In Russian)

References
  1. Kos'janchuk V.V., Sel'vesjuk N.I., Hammatov R.R. Obzor osnovnyh putej povyshenija bezopasnosti sistemy AZN-V. Nauchnyj Vestnik MGTUGA. 2019. T. 22. № 1. S. 40-50 (In Russian).
  2. Advances in Bistatic Radar. Ed. by N.J. Willis, H.D. Griffiths. Raleigh: SciTech Publishing. 2007. 522 p.
  3. Vorobev E., Barkhatov A., Veremyev V., Kutuzov V. DVB-T2 passive radar developed at Saint Petersburg Electrotechnical University. 22nd International Microwave and Radar Conference (MIKON). 14–17 May 2018. Poznan. Poland. Piscataway: IEEE. 2018. Р. 204–207.
  4. Lallo A.Di, Farina A., Fulcoli R., Immediata S., Sedehi M., Tilli E., Timmoneri L. AULOS: finmeccanica family of passive sensors. IEEE Aerospace and Electronic Systems Magazine. 2016. V. 31. № 11. P. 24–29.
  5. Clemente C., Soraghan J.J. Passive bistatic radar for helicopters classification: A Feasibility Study. IEEE Radar Conf. 7–11 May 2012. Atlanta, GA, USA. Piscataway: IEEE. 2012. P. 0946–0949.
  6. Semashko P.G., Parhomenko N.G., Ohrimenko A.E. Perspektivy poluaktivnoj radiolokacii v svjazi s razvitiem sluzhb cifrovogo radioveshhanija. Uspehi sovremennoj radiojelektroniki. 2010. № 7. S. 38-46 (In Russian).
  7. Barhatov A.V., Verem'ev V.I., Vorob'ev E.N., Konovalov A.A., Kovalev D.A., Kutuzov V.M., Mihajlov V.N. Passivnaja kogerentnaja radiolokacija. SPb: Izd-vo SPbGJeTU «LJeTI». 2016. 163 s. (In Russian).
  8. Semashko P.G., Parhomenko N.G., Ohrimenko A.E. Potencial'nye harakteristiki radiolokatorov s cifrovym televizion-nym podsvetom. Uspehi sovremennoj radiojelektroniki. 2011. № 10. S. 47-51 (In Russian).
  9. Chernjak V.S. Mnogopozicionnaja radiolokacija. M.: Radio i svjaz'. 1993. 416 c. (In Russian).
  10. Bulychev Ju.G., Eliseev A.V. Modificirovannyj metod naimen'shih kvadratov v obobshhenno-invariantnoj postanovke. Problemy upravlenija i informatiki. 2006. № 6. S. 71-83 (In Russian).
  11. Eliseev A.V. Algoritm linejnoj fil'tracii, ustojchivyj k singuljarnym oshibkam. Izvestija vuzov. Radiojelektronika. 2005. T. 48. № 10. S. 20-29 (In Russian).
  12. Eliseev A.V., Kalashnikov R.M., Tjurin D.A. Algoritm diskretnoj fil'tracii v uslovijah dinamicheskih pomeh nabljudenija. Avtomatizacija. Sovremennye tehnologii. 2014. № 5. S. 26-35 (In Russian).
  13. Eliseev A.V., Anufriev K.V., Pogorelov R.A., Rubajlo D.Je. Algoritm adaptivnoj nastrojki parametrov linejnogo diskretnogo fil'tra s ispol'zovaniem nechetkoj jekspertnoj sistemy. Radiotehnika. 2019. T. 83. № 7(9). S. 89-102 (In Russian).
  14. Interaktivnaja karta cifrovogo jefirnogo televidenija. [Jelektronnyj resurs]. URL: http:// https://karta.rtrs.rf/ (data obrashhenija: 21.08.2021). (In Russian).
Date of receipt: 03.11.2021
Approved after review: 23.11.2021
Accepted for publication: 11.05.2022