350 rub
Journal Radioengineering №5 for 2022 г.
Article in number:
Design of a dual-band radar
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202205-09
UDC: 629.7.08
Authors:

D.V. Grachev1, A.P. Kovalev2, А.G. Martynov3, A.O. Slavyanskiy4

1,3,4 JSC “Central radio-research institute named after academician A.I. Berg” (Moscow, Russia)

2 JSC “Arsenal Design Bureau named after M.V. Frunze” (Moscow, Russia)

Abstract:

When designing multi-element active electronically scanned arrays (AESA), the task arises of controlling the phase distribution in the opening after final assembly to compensate for the departure of values as a result of the superposition of the tolerance for phase deviation in various nodes.

The proposed work is devoted to the description of the developed control and verification equipment of multi-element AESA, methods for monitoring the parameters of lattice elements and the choice of calibration method

The AESA consisting of modules of beam formation and control is considered. The phase distribution inside each of the channels has a random character with a spread of values from 0 to 2π, which complicates the task. Two calibration methods are considered.

In the first variant, the statistical method of phase front alignment is used. The phase distribution for an ideal lattice is assumed to be in-phase. In a real AESA, it is technologically possible to provide an identical phase in the channels only with an accuracy up to the minimum discretion of the phase shifters. The mathematical expectation of the phase distribution between groups of modules is equalized by increasing the introduced phase shift by one discrete value of the phase shifters and finding the maximum gain of the module.

As a second calibration option, it is assumed to consider the preliminary measurement of the amplitude-phase characteristics of the antenna array division system and transmitting modules. By making measurements in this way, it is possible to obtain the amplitude-frequency response and phase-frequency response of each divider channel, taking into account the transmitting module.

Based on the results of the research, the methods of calibration of AESA elements and the antenna array as a whole are considered. Structural and functional schemes of various variants of control and verification equipment of multi-element AESA have been developed.

The main calibration method adopted is the method of indirect measurement of the gain with iterative reduction of the phase distribution in the opening to an equalized one due to the speed of obtaining the result. An additional and more accurate calibration method is the element-by-element adjustment.

In the future, it is planned to manufacture and operate the developed control and verification equipment for ground-based experimental testing of antenna elements of promising airborne radar complexes and complexes of high-speed radio lines.

Pages: 77-79
For citation

Grachev D.V., Kovalev A.P., Martynov А.G., Slavyanskiy A.O. Control and verification equipment of the active electronically scanned arrays. Radiotekhnika. 2022. V. 86. № 5. P. 72−79. DOI: https://doi.org/10.18127/j00338486-202205-09 (In Russian)

References
  1. Kurganov V.V., Ljalin K.S., Prihod'ko D.V., Chistjuhin V.V. Bystryj algoritm opredelenija amplitudno-fazovyh oshibok v kanalah antennyh reshetok. Izvestija vuzov. Ser. Jelektronika. 2011. № 1(87). S. 64–69.
  2. Gorjachkin O.V., Maslov I.V. Osobennosti konstrukcii antennoj sistemy dlja kosmicheskogo radiolokatora s sintezirovannoj aperturoj antenny
    L- i P-diapazona. Vestnik Samarskogo un-ta. Ser. Ajerokosmicheskaja tehnika, tehnologii i mashinostroenie. 2016. Ch. 15. № 3. S. 153–162.
  3. Efimov A.V., Zajcev S.Je., Savosin G.V., Titov M.P., Cvetkov O.E. Nekotorye rezul'taty ispytanij kosmicheskogo apparata «KONDOR-Je» s RSA kak osnovy novoj radiolokacionnoj kosmicheskoj sistemy. Radiotehnicheskie i telekommunikacionnye sistemy. 2016. № 3(23).
    S. 24-36.
  4. Zhirov V.A., Orlov A.E., Smirnov A.A. Model' radiolinii sputnikovoj svjazi v sostave vysokoskorostnoj sputnikovoj sistemy. Trudy uchebnyh zavedenij svjazi. 2018. Ch. 4. № 3. S. 45–53.
  5. Vorfolomeev A.A. Sovershenstvovanie prostranstvenno-jenergeticheskih harakteristik KV-priemnyh mnogokanal'nyh antennyh kompleksov. Innovacii v nauke. 2014. № 38. S. 49–55.
  6. Shackij N.V., Golovan' S.A., Strizhak A.G., Shackij V.N. Sistema upravlenija tehnicheskim sostojaniem malojelement-nyh fazirovannyh antennyh reshetok na osnove modeli antennoj reshetki pri nalichii oshibok realizacii fazy v ee kanalah. Izvestija Juzhnogo feder. un-ta. Ser. Tehnicheskie nauki. 2014. № 1(150). S. 19–28.
  7. Berdyshev V.P., Garin E.N., Fomin A.N. i dr. Radiolokacionnye sistemy: Uchebnik. Pod obshh. red. V.P. Berdysheva. Krasnojarsk: Sibirskij feder. un-t. 2011. 400 s.
  8. Kisel' N., Grishhenko S., Derachic D. Imitacionnoe trehmernoe jelektromagnitnoe modelirovanie plavnogo fazovrashhatelja. Komponenty i tehnologii. 2014. № 6 (155). S. 161–164.
  9. Babun'ko S.A., Belov Ju.G. Konstruirovanie i raschet shirokopolosnogo fazovogo manipuljatora. Vestnik NGIJeI. 2016. № 4(59). S. 29–37.
  10. Budaj A.G., Grinchuk A.P., Gromyko A.V. Razrabotka koncepcii postroenija apparatno-programmnogo kompleksa modul'noj konstrukcii dlja opredelenija harakteristik antennyh sistem po izmerenijam v blizhnej zone. Pribory i metody izmerenij. 2017. Ch. 8. № 2. S. 151–159.
Date of receipt: 12.04.2022
Approved after review: 18.04.2022
Accepted for publication: 28.04.2022