350 rub
Journal Radioengineering №4 for 2022 г.
Article in number:
Combined tracking system of GPS signals based on а nonlinear Kalman filter
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202204-17
UDC: 537.86; 621.37
Authors:

M.M. Kanouj1, A.V. Klokov2

1,2 NR TSU (Tomsk, Russia)

1 motayamkanouj84@stud.tsu.ru; 2 701-kav@mail.tsu.ru

 

Abstract:

The methodology of constructing a tracking system for radio navigation parameters of satellite signals in the GPS receivers is considered. Two separate tracking subsystems based on the UKF are proposed: the first subsystem is synthesized in a coherent mode and performs estimates of the signal amplitude, carrier phase and Doppler frequency; the second is a tracking subsystem for code delay. These subsystems work together and are combined to form quasi-optimal joint estimation of all the above-mentioned radio navigation parameters. A comparative analysis of the performance characteristics of the traditional tracking system and the proposed one is performed. The root mean square error of Doppler frequency estimates and the tracking probability at different signal-to-noise ratios are investigated. The advantage of the considered tracking approach over the traditional scheme is shown.

This study was supported by the Tomsk State University Development Programme (Priority-2030).

Pages: 142-154
For citation

Kanouj M.M., Klokov A.V. Combined tracking system of GPS signals based on а nonlinear Kalman filter. Radiotekhnika. 2022. V. 86. № 4. P. 142−154. DOI: https://doi.org/10.18127/j00338486-202204-17 (In Russian)

References
  1. Perov A.I. Metody i algoritmy optimal'nogo priema signalov v apparature potrebitelej sputnikovyh radionaviga-cionnyh sistem. M.: Radiotehnika, 2012. 240 s. (In Russian).
  2. Kaplan E.D., Hegarty C.G. Understanding GPS: Principles and Applications. 2nd ed. Artech House: London. 2006. 703 p.
  3. Perov A.I. GLONASS. Principy postroenija i funkcionirovanija. M.: Radiotehnika. 2010. 800 s. (In Russian).
  4. Ziedan N.I. GNSS receivers for weak signals. Artech house: Boston, London. 2006. 234 p.
  5. Zhang H., Xu L., Yan B., Luo L.A. A Carrier Estimation Method Based on MLE and KF for Weak GNSS Signals. Sensors. 2017. № 17. Р. 1468.
  6. Zeng C., Li W., Bi B., Chen Q. Application of Extended Kalman Filter Based Semi-Codeless for Tracking High Dynamic GPS L2 Signal. IEEE 2nd International Conference on Frontiers of Sensors Technologies. 2017. Р. 284–289.
  7. Niu X., Li B., Ziedan N., et al. Analytical and simulation-based comparison between traditional and Kalman filter-based phase-locked loops. GPS Solutions. 2017. V. 21. № 1. Р. 123-135.
  8. Brown R.G., Hwang P.Y.C. Introduction to random signals and applied Kalman filtering. 4th ed. USA. John Wiley & Sons. Hoboken. NJ. 2012. 383 p.
  9. Sarkka S. Bayesian Filtering and Smoothing. Cambridge University Press. 2013. 254 p.
  10. Tu Z., Lu T., Chen Q. A Novel Carrier Loop Based on Unscented Kalman Filter Methods for Tracking High Dynamic GPS Signals. In Proceedings of ICCT. 2018. 1 p.
  11. Chen X., Wang W., Meng W., Zhang Z. High Dynamic GPS Signal Tracking Based on UKF and Carrier Aiding Technology. In Proceedings of IEEE on Communications and Mobile Computing. 2010. Р. 476–480.
  12. Shavrin V.V. i dr. Zadacha sovmestnoj ocenki radionavigacionnyh Parametrov i jenergeticheskogo parametra signala SRNS v kogerentnom rezhim. Materialy dokladov Vseross. nauch.-tehnich. konf. studentov, aspirantov i molodyh uchenyh. Ch. 1. Tomsk. 2016. S. 65–68 (In Russian).
  13. Shavrin V.V. i dr. Ocenka radionavigacionnyh parametrov signalov GNSS v rezhime kogerentnogo adaptivnogo priema s ispol'zovaniem algoritma sigma-tochechnogo fil'tra Kalmana. Raketno-kosmicheskoe priborostroenie i informacionnye sistemy. 2016. T. 3. № 4. S. 16-21 (In Russian).
  14. Perov A.I. Sravnitel'nyj analiz dvuh algoritmov fil'tracii parametrov navigacionnogo radiosignala maloj moshhnosti. Radiotehnika. 2019. T. 83. № 8. C. 9-19 (In Russian).
  15. Ziedan N.I., Garrison J.L. Bit Synchronization and Doppler Frequency Removal at Very Low Carrier to Noise Ratio Using a Combination of the Viterbi Algorithm with an Extended Kalman Filter. In Proceedings of the ION, Portland, OR. USA. 2003. P. 9–12.
  16. Kanuzh M.M., Klokov A.V., Parvatov G.N., Potekaev A.E. Novyj podhod v sozdanii GPS-sistem pozicionirovanija v dinamicheskih uslovijah priema s vysokim urovnem shumov. Fizika. 2021. T. 64. № 7. S. 134–144 (In Russian).
  17. Kanuzh M.M., Klokov A.V. Adaptivnyj anscentnyj fil'tr Kalmana dlja slezhenija za GPS-signalami pri neizvestnoj i izmenjajushhejsja vo vremeni kovariacii shuma. Giroskopija i navigacija. 2021. T. 29. № 3(114). S. 34–51 (In Russian).
  18. Kanouj M.M., Klokov A.V. Adaptive Unscented Kalman Filter for Tracking GPS Signals in the Case of an Unknown and Time-Varying Noise Covariance. Gyroscopy and Navigation. 2021. V. 12. № 3. Р. 34-51.
Date of receipt: 19.01.2022
Approved after review: 02.02.2022
Accepted for publication: 04.04.2022