350 rub
Journal Radioengineering №4 for 2022 г.
Article in number:
High performance algorithm for capacity estimation of communication channels functioning on the basis of resolution time theory
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202204-13
UDC: 519.724.2
Authors:

1,2 Kazan National Research Technical University n.a. A.N. Tupolev – KAI (Kazan, Russia)

3 Volga State university of Technology (Yoshkar-Ola, Russia)

1 aviap@mail.ru; 2 rrfayzullin@kai.ru; 3 ryabov22@mail.ru

Abstract:

The paper presents an optimized algorithm for specific capacity estimation of frequency-selective radio communication channels with intersymbol interference, in which the information transfer rate can exceed the Nyquist rate, and multi-position phase-shift keying and amplitude-phase-shift keying signals are used. The imposed restrictions on the application of the optimized algorithm proposed in this paper do not differ from those that were already presented in its original version.

The key features of the optimized algorithm presented in the paper are: 1) a decrease in the number of solutions to be sorted out, which is achieved due to the proven “combination property”; 2) number reduction of the required polynomials to be calculated, that used in solution the equations that are necessary to estimate the resolution time. So, in particular, this allows to reduce the amount of required calculations by 2 times for a multi-position amplitude-phase-shift keying signal; 3) using the clustering procedure to select a common kernel for polynomials to be calculated; the clustering procedure itself is based on a binary mask that determines the signs in front of the polynomial members; 4) a more accurate procedure for channel effective memory estimation is obtained, thanks to the above features. The specified features of the optimized algorithm made it possible to ensure its execution within the computer time sufficient for its implementation in real time, which allows it to be effectively used in radio engineering data transmission systems operating in frequency-selective communication channels; to estimate the symbol duration of a multi-position phase-shift keying and amplitude-phase-shift keying signals, using the approach based on the theory of resolution time, and capacity of the frequency-selective communication channel. In conclusion, the paper presents the main developing characteristics of the obtained algorithm for capacity estimation.

Pages: 91-109
For citation

Lerner I.M., Fayzullin R.R., Ryabov I.V. High performance algorithm for capacity estimation of communication channels functioning on the basis of resolution time theory. Radiotekhnika. 2022. V. 86. № 4. P. 91−109. DOI: https://doi.org/10.18127/j00338486-202204-13 (In Russian)

References
  1. Mordvinov A.E. Issledovanie vozmozhnosti povyshenija chastotnoj jeffektivnosti linij svjazi za schet ispol'zovanija signalov s vzaimnoj interferenciej simvolov: Avtoref. … diss. kand. tehn. nauk. M.: Poligraficheskij centr MJeI (TU). 2008. 20 s. (In Russian).
  2. Gonorovskij I.S. Radiotehnicheskie cepi i signaly. Ch. 1. M.: Sovetskoe radio. 1967. 430 c. (In Russian).
  3. Kotel'nikov V.A. Teorija potencial'noj pomehoustojchivosti. M.-L.: Gosjenergoizdat. 1956. 158 s.
  4. Wozencraft J.M., Jacobs I.M. Principles of Communication Engineering. N.Y.: John Wiley & Sons. Inc. 1965. 720 p.
  5. Fink L.M. Teorija peredachi diskretnyh soobshhenij. M.: Sovetskoe radio. 1970. 397 s. (In Russian).
  6. Korzhik V.I., Fink L.M., Shhelkunov K.N. Raschet pomehoustojchivosti sistem peredachi diskretnyh soobshhenij: Spravochnik. M.: Radio i svjaz'. 1981. 232 s. (In Russian).
  7. Klovskij D.D. Peredacha diskretnyh soobshhenij po radiokanalam. Izd. 2-e. M.: Radio i svjaz'. 1982. 304 s. (In Russian).
  8. Proakis J.G. Digital Communications. N.Y.: McGraw-Hill. 2001. 928 p.
  9. Pjatoshin Ju.P. Nekotorye svojstva m-ichnyh sistem svjazi s kodirovaniem. Problemy peredachi informacii. 1968. T. 4. № 1. S. 45-51 (In Russian).
  10. Bakulin M.G., Krejndelin V.B. Problema povyshenija spektral'noj jeffektivnosti i emkosti v perspektivnyh sistemah svjazi 6G. T-Comm: Telekommunikacii i transport. 2020. T. 14. № 2. S. 25-31 (In Russian).
  11. Tufts D.W. Nyquist's problem - the joint optimization of transmitter and receiver in pulse amplitude modulation. Proceedings of the IEEE. 1965. V. 53. № 3. Р. 248-259.
  12. Marko Н. Kann man ueber die Nyquistrate hinaus uebertragen. Moeglichkeiten und grenzen der digitalen uebertragung mit und ohne quanttisierte rueckkopplungKann man ueber die nyquistrate hinaus uebertragen. Moeglichkeiten und grenzen der digitalen uebertragung mit und ohne quanttisierte rueckkopplung. AEU.1982. V. 36. № 6. Р. 238-244.
  13. Mazo J.E. Faster than Nyquist-Signaling. The Bell System Technical Journal. 1975. V. 54. № 8. Р. 1451-1462.
  14. Anderson J.B., Rusek F., Viktor Ӧ. Faster Than Nyquist Signalling. Proceeding of the IEEE. 2013. V. 101. № 8. Р. 1817-1830.
  15. Zajceva Ju.M. Metody povyshenija jeffektivnosti ispol'zovanija chastotnogo resursa v besprovodnyh shirokopolosnyh sistemah svjazi.
  16. T-Comm: Telekommunikacii i transport. 2012. № 2. S. 56-58 (In Russian).
  17. Mah'jub H.E.A., Kisel' N.N., Grishhenko S.G. Povyshenie spektral'noj jeffektivnosti kanala v besprovodnyh sistemah svjazi pjatogo pokolenija na osnove sistemy massiv-MIMO. Izvestija JuFU. Tehnicheskie nauki. 2015. T. 172. № 11. S. 63-72 (In Russian).
  18. Frolov A.A. Analiz sovremennyh standartov: MCWILL, TD_SCDMA, WCDMA, IEEE 802.15.3A dlja primenenija v SShP_sistemah.
  19. T-Comm: Telekommunikacii i transport. 2012. № 9. S. 144-148 (In Russian).
  20. Erohin S.D., Zajceva Ju.M. Analiz spektral'noj jeffektivnosti sovremennyh shirokopolosnyh sistem svjazi. Fundamental'nye problemy radiojelektronnogo priborostroenija. 2010. T. 10. № 1-3. S. 166-169 (In Russian).
  21. Habarov E.O. Razrabotka i issledovanie metodov peredachi diskretnyh signal'nyh posledovatel'nostej po kanalam s mezhsimvol'noj interferenciej: Avtoref. diss. ... dokt. tehn. nauk: 05.12.13. Samara. 2013. 311 s. (In Russian).
  22. Ovchinnikov V.V. Adaptivnoe jekvalajzirovanie signalov s bystroj PPRCh dlja preodolenie dispersionnyh iskazhenij i povyshenija skrytnosti shirokopolosnoj KV svjazi: Avtoref. diss. ... kand. tehn. nauk: 05.12.13. Joshkar-Ola. 2020. 159 s. (In Russian).
  23. Male J., Porte J., Gonzalez T., et al. Analysis of the Ordinary and Extraordinary Ionospheric Modes for NVIS Digital Communications Channels. Sensors. 2021. V. 21. № 6. Р. 1-16.
  24. Lerner I.M. Analiticheskaja ocenka propusknoj sposobnosti kanala svjazi s chastotnoj harakteristikoj rezonansnogo fil'tra pri nalichii mezhsimvol'nyh iskazhenij i ispol'zovanii mnogopozicionnogo fazomanipulirovannogo signala. T-Comm: Telekommunikacii i transport. 2017. T. 11. № 9. S. 65–73 (In Russian).
  25. Lerner I.M. Metod ocenki propusknoj sposobnosti real'nyh kanalov svjazi s mnogopozicionnymi fazomanipulirovannymi signalami pri nalichii mezhsimvol'nyh iskazhenij i ego primenenie. T-Comm: Telekommunikacii i transport. 2017. T. 11. № 8. S. 52-58 (In Russian).
  26. Lerner I.M., Il'in G.I. Ob odnoj vozmozhnosti uvelichenija skorosti peredachi pri nalichii destabilizirujushhih faktorov v sistemah svjazi, ispol'zujushhih vzaimnuju interferenciju simvolov. Fizika volnovyh processov i radiotehnicheskie sistemy. 2017. T. 20. № 4. S. 24-34 (In Russian).
  27. Lerner I.M., Chernjavskij S.M. Ocenka propusknoj sposobnosti real'nyh kanalov svjazi s AFMn-N-signalami pri nalichii MSI. T-Comm: Telekommunikacii i transport. 2018. T. 12. № 4. S. 48-55 (In Russian).
  28. Lerner I.M., Il'in G.I. Chislennyj metod ocenki potencial'noj propusknoj sposobnosti pri ispol'zovanii FMn-n-signala v kanale svjazi s mezhsimvol'nymi iskazhenijami. Vestnik KGTU im. A.N. Tupoleva. 2018. № 4. S. 138-149 (In Russian).
  29. Lerner I.M., Fatyhov M.M., Il'in G.I. Osobennosti funkcionirovanija kanalov svjazi s AFMn-N-signalami pri ispol'zovanii vzaimno korrelirovannymi simvolami. Fizika volnovyh processov i radiotehnicheskie sistemy. 2019. T. 22. № 1. S. 36-49 (In Russian).
  30. Lerner I.M. K voprosu optimizacii amplitudno-chastotnyh harakteristik kanalov svjazi s FMN-n-signalami, postroennyh na osnove teorii razreshajushhego vremeni. T-Comm: Telekommunikacii i transport. 2019. T. 13. № 9. S. 36-49 (In Russian).
  31. Lerner I.M. O vlijanii formy amplitudno-chastotnoj harakteristiki na propusknuju sposobnost' kanala svjazi s pamjat'ju, ispol'zujushhego principy teorii razreshajushhego vremeni, s AFMn-N-signalami. T-Comm: Telekommunikacii i transport. 2019. T. 13. № 10. S. 45-59 (In Russian).
  32. Lerner I.M., Il'in G.I., Il'in A.G. K voprosu o ciklostacionarnosti AFMn-N-signalov, nabljudaemyh na vyhode kanala svjazi s mezhsimvol'nymi iskazhenijami. Vestnik KGTU im. A.N. Tupoleva. 2018. № 3. S. 107-117 (In Russian).
  33. Gorjachkin O.V. Metody slepoj obrabotki signalov i ih prilozhenija v sistemah radiotehniki i svjazi. M.: Radio i svjaz'. 2003. 230 s. (In Russian).
  34. Elgenedy M. Adaptive Equalization Techniques in Multipath Fading Channels in the HF Band. MS. Thesis. Oct. 2010. Cairo University. Р. 162.
  35. MIL-STD-188-110B: Interoperability and Performance Standards for Data Modems. USA: US Department of Defense. 2000. 137 p.
  36. Shadrin B.G., Bogan'kov B.S., Zachatejskij D.E. Primenenie tehnologii MIMO v sistemah KV-radiosvjazi. Tehnika radiosvjazi. 2016.T. 16. № 4. S. 29-39 (In Russian).
  37. Evtjanov S.I. Perehodnye processy v priemno-usilitel'nyh shemah. M.: Svjaz'izdat. 1948. 221 s. (In Russian).
  38. Lerner I.M., Chernjavskij S.M. Kadushkin V.V. K voprosu postroenija radiotehnicheskoj sistemy peredachi informacii, funkcionirujushhej na osnove teorii razreshajushhego vremeni i ispol'zujushhuju ChMn-n-signal s nepreryvnoj fazoj. Naukoemkie tehnologii v kosmicheskih issledovanijah Zemli. 2020. T. 12. № 5. S. 22–35 (In Russian).
Date of receipt: 17.12.2021
Approved after review: 18.01.2022
Accepted for publication: 04.04.2022