350 rub
Journal Radioengineering №4 for 2022 г.
Article in number:
Automatic adjustment of the angle of the place on signals reflected from the target and local objects
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202204-12
UDC: 621.396.663
Authors:

N.A. Bashtannik1, A.N. Bashtannik2, T.N. Svetlichkina3

1,3 Astrakhan State University Branch (Znamensk, Russia)

2 Сompany of Spacetel (Moscow, Russia)

1-3 bna-kandidat@rambler.ru

Abstract:

Setting a problem. In order to obtain high-quality radar information, it is necessary to take into account possible errors in measuring the angular coordinates of low-flying targets in ever-changing weather conditions. In this paper, pay attention to refractive errors that occur at long ranges and small angles of the place when determining the angular coordinates of the target in the conditions of ever-changing weather at the point where the air object is located. Experimental work to carry out on a non-flying method, that is, without attracting real aviation means.

Goal. Offer an automatic method of accounting for refractive errors when measuring target angular coordinates at long ranges and low altitudes, taking into account weather conditions at the location of the air object.

Results. The use of this method solves the problem of improving the quality of radar information by automatically accounting for refractive errors in the radar station when measuring the angle of the target at long ranges and low altitudes under different weather conditions at the target point of view.

Shown. The proposed method allows you to automatically and continuously (without the operator's intervention) to take into account refractive errors when measuring the height of the target. To do this, it is necessary to continuously (once per review) to measure the amplitude of the signal from a stationary (known) radar reflector (local object) and to compare these amplitudes with the "calibration curve".

Practical significance. The proposed automatic method of accounting for refractive errors is the most rational as it frees the radar station operator to constantly manually correct the refractive error when measuring the angular coordinates of the target. And this is very important when there is a massive raid of low-flying targets, and manual adjustment of angular coordinates becomes almost impossible. 

Pages: 84-90
For citation

Bashtannik N.A., Bashtannik A.N., Svetlichkina T.N. Automatic adjustment of the angle of the place on signals reflected from the target and local objects. Radiotekhnika. 2022. V. 86. № 4. P. 84−90. DOI: https://doi.org/10.18127/j00338486-202204-12 (In Russian

References
  1. Makushkin I.E., Dorofeev A.E., Gribanov A.N., Gavrilova S.E., Sinani A.I. Metod izmerenija uglovyh oshibok pelenga v sisteme «antenna–obtekatel'» v oblasti skanirovanija lucha FAR. Vestnik Koncerna PVO «Almaz – Antej». 2019. № 2. S. 7–24 (In Russian).
  2. Makushkin I.E., Shemarin A.M., Vicukaev Ju.Ju., Tjurin D.M. Sposob izmerenija pelengacionnyh oshibok dlja radioprozrachnogo obtekatelja proizvol'noj formy. Vestnik Koncerna PVO «Almaz – Antej». 2020. № 1. S. 26–45 (In Russian).
  3. Stolbovoj V.S., Turko L.S., Zaletin P.V. Pelengacionnaja harakteristika sistemy «antenna–obtekatel'» i puti povyshenija tochnosti pelengacii radiolokacionnyh ob#ektov. Vestnik Koncerna PVO «Almaz – Antej». 2016. № 1. S. 52–60 (In Russian).
  4. Stolbovoj V.S., Turko L.S., Zaletin P.V. Algoritmicheskoe i apparaturnoe obespechenie kompensacii pelengacionnyh oshibok sistem «antenna–obtekatel'». Vestnik Koncerna VKO «Almaz – Antej». 2016. № 3. S. 15–23 (In Russian).
  5. Bashtannik N.A. Vlijanie refrakcii radiovoln na ocenku tochnostnyh harakteristik radiolokacionnyh stancij. Radiotehnika. 2016. № 3.
  6. S. 85-87 (In Russian).
  7. Bashtannik N.A. Ocenka vlijanija pogodnyh uslovij na tochnostnye harakteristiki radiolokacionnyh stancij. Materialy VII Mezhdunar. nauch.-praktich. konf. «Otechestvennaja nauka v jepohu izmenenij: postulaty proshlogo i teorii novogo vremeni» (g. Ekaterinburg, 6–7 marta 2015 g.). Ch. 3. № 2(7). S. 18–19 (In Russian).
  8. Shirman Ja.D. Radiojelektronnye sistemy: Osnovy postroenija i teorija. Spravochnik. Izd. 2-e. M.: Radiotehnika. 2007 (In Russian).
  9. Braun M. OFDM Radar algorithms in mobile communication networks. Dissertation. Karlsruhe: Karlsruhe Institute of Technology. 2014. 176 p.
  10. Schmidt R.O. Multiple emitter location and signal parameter estimation. IEEE Transactions on antennas and propagation. 1986. V. AP-34. № 3. P. 276–280.
  11. Stoica P.G., Moses R.L. Spectral analysis of signals. Upper Saddle River. New Jersey: Prentice Hall. 2005. 447 p.
  12. Blossom E. GNU Radio: Tools for Exploring the Radio Frequency Spectrum. Linux Journal. URL: http://www.linuxjournal.com/article/7319 (data obrashhenija 20.09.2018).
  13. Sarcione M., Mulcahey J., Schmidt D., et al. The design, development and testing of the THAAD (Theater High Altitude Area Defense) solid state phased array (formerly ground based radar). Proceedings of International Symposium on Phased Array Systems and Technology. 15–18 Oct. 1996.
  14. Guerci J.R. Theory and application of covariance matrix tapers to robust adaptive beamforming. IEEE Trans. Signal Processing. 2000. V. 47. P. 977–985.
  15. Taferner M., Kuchar A., Lang M. C., Tangemann M., Hock C. A Novel DOA-based Beamforming Algorithm with Broad Nulls. 10th International Symposium on Personal, Indoor and Mobile Radio Corn. PIMRC ’99. Osaka. Sept. 1999. Р. 342–247.
Date of receipt: 31.05.2021
Approved after review: 28.06.2021
Accepted for publication: 04.04.2022