Journal Radioengineering №3 for 2022 г.
Article in number:
A high-gain steerable reflective array antenna for V-band wireless communications
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202203-11
UDC: 621.396.67
Authors:

V.M. Seleznev

Lobachevsky University (Nizhny Novgorod, Russia)
 

Abstract:

Problem statement. To fully utilize the millimeter wave spectrum in 5G systems, it is planned to adopt a heterogeneous network (HetNet) architecture, in which modern 4G Internet access technologies operating within bands below 6 GHz are integrated with new broadband communication systems of the millimeter wavelength range. However, the deployment of heterogeneous networks in urban conditions that are difficult for the propagation of millimeter-wave radio signals imposes special requirements on antenna systems. Therefore, the development of cheap millimeter-range scanning antennas with a high gain and a working frequency band of several gigahertz is an urgent task.

Objective. The main purpose of this work was to develop a scanning antenna system of the 60 GHz band with a planar reflector combined with a compact phased array antenna (PAA) module.

Results. The measurement results have shown that the developed reflective array antenna within the band of 57.24-65.88 GHz, divided in accordance with IEEE 802.11ad and IEEE 802.11ay standards into four channels with a bandwidth of 2.16 GHz, has a high gain of 20.1-24.5 dBi and is capable of performing electronic beam scanning in the azimuthal plane in the ±15° sector. Moreover, the simulation results have shown that the full coverage sector in the azimuthal plane may potentially amount to ±35°.

Practical significance. The use of such antennas at both ends of reconfigurable relay communication lines will allow data to be transmitted over a distance of 100-150 m at a speed of 2.5-4.62 Gbps.

Pages: 115-123
For citation

Seleznev V.M. A high-gain steerable reflective array antenna for V-band wireless communications. Radiotekhnika. 2022. V. 86. № 3. P. 115−30. DOI: https://doi.org/10.18127/j00338486-202203-11 (In Russian)

References
  1. Okasaka S. et al., Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular. Sensors. 2016.
    DOI: 10.3390/s16091362.
  2. Sakaguchi K. et al. Where, When, and How mmWave is Used in 5G and Beyond // IEICE Transactions on Electronics. 2017.
    V. E100.C. № 10. P. 790–808. E100. P.790. DOI: 10.1587/transele.
  3. Maltsev A., Sadri A., Pudeyev A., Bolotin I. Highly Directional Steerable Antennas: High-Gain Antennas Supporting User Mobility or Beam Switching for Reconfigurable Backhauling // IEEE Vehicular Technology Magazine. 2016. V. 11. № 1. P. 32–39. DOI: 10.1109/MVT.2015.2508318.
  4. Lamminen A. E. I. et al., Beam-Switching Dual-Spherical Lens Antenna with Low Scan Loss at 71–76 GHz // IEEE Antennas and Wireless Propagation Letters. 2018. V. 17. № 10. P. 1871–1875. DOI: 10.1109/LAWP.2018.2868543.
  5. Hill T.A., Kelly J.R., Khalily M., Brown T.W.C. Cascaded Fresnel Lens Antenna for Scan Loss Mitigation in Millimeter Wave Access Points. IEEE Transactions on Antennas and Propagation. 2020. V. 68. № 10. P. 6879–6892. DOI: 10.1109/TAP.2020.2992837.
  6. Maltsev A., Lomayev A., Pudeyev A., Bolotin I., Bolkhovskaya O., Seleznev V. Millimeter-wave Toroidal Lens-Array Antennas Experimental Measurements // In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Boston. MA. USA. 2018. P. 607–608. DOI: 10.1109/APUSNCURSINRSM.2018.8608633.
  7. Maltsev A., Bolkhovskaya O., Seleznev V. Scanning Toroidal Lens-Array Antenna with a Zoned Profile for 60 GHz Band. IEEE Antennas and Wireless Propagation Letters. 2021. V. 20. № 7. P. 1150–1154. DOI: 10.1109/LAWP.2021.3073913.
  8. Nayeri P., Yang F., Elsherbeni A.Z. Bifocal Design and Aperture Phase Optimizations of Reflectarray Antennas for Wide-Angle Beam Scanning Performance // IEEE Transactions on Antennas and Propagation. 2013. V. 61. № 9. P. 4588–4597.
    DOI: 10.1109/TAP.2013.2264795.
  9. Li C., Xu S., Yang F., Li M. Design and Optimization of a Mechanically Reconfigurable Reflectarray Antenna with Pixel Patch Elements Using Genetic Algorithm // In 2019 IEEE MTT-S International Wireless Symposium (IWS). Guangzhou, China. 2019. P. 1–3. DOI: 10.1109/IEEE-IWS.2019.8804092.
  10. Mei P., Zhang S., Pedersen G. F. A Low-Cost, High-Efficiency and Full-Metal Reflectarray Antenna with Mechanically 2-D Beam-Steerable Capabilities for 5G Applications. IEEE Transactions on Antennas and Propagation. 2020. V. 68. № 10. P. 6997–7006. DOI: 10.1109/TAP.2020.2993077.
  11. Kamoda H., Iwasaki T., Tsumochi J., Kuki T., Hashimoto O. 60-GHz Electronically Reconfigurable Large Reflectarray Using
    Single-Bit Phase Shifters. IEEE Transactions on Antennas and Propagation. 2011. V. 59. № 7. P. 2524–2531.
    DOI: 10.1109/TAP.2011.2152338.
  12. Karnati K.K., Trampler M.E., Gong X. A Monolithically BST-integrated Ka-Band Beamsteerable Reflectarray Antenna //
    IEEE Transactions on Antennas and Propagation. 2017. V. 65. № 1. P. 159–166. DOI: 10.1109/TAP.2016.2627007.
  13. Li X. et al. Broadband Electronically Scanned Reflectarray Antenna with Liquid Crystals // IEEE Antennas and Wireless Propagation Letters. 2021. V. 20. № 3. P. 396–400. DOI: 10.1109/LAWP.2021.3051797.
  14. Encinar J.A. Design of Two-Layer Printed Reflectarrays Using Patches of Variable Size. IEEE Transactions on Antennas and Propagation. 2001. V. 49. № 10. P. 1403–1410. DOI: 10.1109/8.954929.
  15. Visentin T., Keusgen W., Weiler R. Dual-Polarized Square-Shaped Offset-Fed Reflectarray Antenna with High Gain and High Bandwidth in the 60 GHz Domain. In 2015 9th European Conference on Antennas and Propagation (EuCAP). Lisbon. Portugal. 2015. P. 1–5.
  16. Pan H.K., Horine B.D., Ruberto M., Ravid S. Mm-wave Phased Array Antenna and System Integration on Semi-Flex Packaging. In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI). Spokane. WA. USA. 2011. P. 2059–2062.
    DOI: 10.1109/APS.2011.5996913.
  17. Bolkhovskaya O., Maltsev A., Seleznev V., Bolotin I. Cost-efficient RAA Technology for Development of the High-Gain Steerable Antennas for mmWave Communications // In Machine Learning and Artificial Intelligence. 2020. V. 332. P. 346–353.
    DOI: 10.3233/FAIA200800.
  18. Yang J., Shen Y., Wang L., Meng H., Dou W., Hu S. 2-D Scannable 40-GHz Folded Reflectarray Fed by SIW Slot Antenna in
    Single-Layered PCB // IEEE Transactions on Microwave Theory and Techniques. 2018. V. 66. № 6. P. 3129–3135.
    DOI: 10.1109/TMTT.2018.2818698.
Date of receipt: 28.01.2022
Approved after review: 08.02.2022
Accepted for publication: 28.02.2022
Download