V.M. Seleznev
Lobachevsky University (Nizhny Novgorod, Russia)
Problem statement. To fully utilize the millimeter wave spectrum in 5G systems, it is planned to adopt a heterogeneous network (HetNet) architecture, in which modern 4G Internet access technologies operating within bands below 6 GHz are integrated with new broadband communication systems of the millimeter wavelength range. However, the deployment of heterogeneous networks in urban conditions that are difficult for the propagation of millimeter-wave radio signals imposes special requirements on antenna systems. Therefore, the development of cheap millimeter-range scanning antennas with a high gain and a working frequency band of several gigahertz is an urgent task.
Objective. The main purpose of this work was to develop a scanning antenna system of the 60 GHz band with a planar reflector combined with a compact phased array antenna (PAA) module.
Results. The measurement results have shown that the developed reflective array antenna within the band of 57.24-65.88 GHz, divided in accordance with IEEE 802.11ad and IEEE 802.11ay standards into four channels with a bandwidth of 2.16 GHz, has a high gain of 20.1-24.5 dBi and is capable of performing electronic beam scanning in the azimuthal plane in the ±15° sector. Moreover, the simulation results have shown that the full coverage sector in the azimuthal plane may potentially amount to ±35°.
Practical significance. The use of such antennas at both ends of reconfigurable relay communication lines will allow data to be transmitted over a distance of 100-150 m at a speed of 2.5-4.62 Gbps.
Seleznev V.M. A high-gain steerable reflective array antenna for V-band wireless communications. Radiotekhnika. 2022. V. 86. № 3. P. 115−30. DOI: https://doi.org/10.18127/j00338486-202203-11 (In Russian)
- Okasaka S. et al., Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular. Sensors. 2016.
DOI: 10.3390/s16091362. - Sakaguchi K. et al. Where, When, and How mmWave is Used in 5G and Beyond // IEICE Transactions on Electronics. 2017.
V. E100.C. № 10. P. 790–808. E100. P.790. DOI: 10.1587/transele. - Maltsev A., Sadri A., Pudeyev A., Bolotin I. Highly Directional Steerable Antennas: High-Gain Antennas Supporting User Mobility or Beam Switching for Reconfigurable Backhauling // IEEE Vehicular Technology Magazine. 2016. V. 11. № 1. P. 32–39. DOI: 10.1109/MVT.2015.2508318.
- Lamminen A. E. I. et al., Beam-Switching Dual-Spherical Lens Antenna with Low Scan Loss at 71–76 GHz // IEEE Antennas and Wireless Propagation Letters. 2018. V. 17. № 10. P. 1871–1875. DOI: 10.1109/LAWP.2018.2868543.
- Hill T.A., Kelly J.R., Khalily M., Brown T.W.C. Cascaded Fresnel Lens Antenna for Scan Loss Mitigation in Millimeter Wave Access Points. IEEE Transactions on Antennas and Propagation. 2020. V. 68. № 10. P. 6879–6892. DOI: 10.1109/TAP.2020.2992837.
- Maltsev A., Lomayev A., Pudeyev A., Bolotin I., Bolkhovskaya O., Seleznev V. Millimeter-wave Toroidal Lens-Array Antennas Experimental Measurements // In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Boston. MA. USA. 2018. P. 607–608. DOI: 10.1109/APUSNCURSINRSM.2018.8608633.
- Maltsev A., Bolkhovskaya O., Seleznev V. Scanning Toroidal Lens-Array Antenna with a Zoned Profile for 60 GHz Band. IEEE Antennas and Wireless Propagation Letters. 2021. V. 20. № 7. P. 1150–1154. DOI: 10.1109/LAWP.2021.3073913.
- Nayeri P., Yang F., Elsherbeni A.Z. Bifocal Design and Aperture Phase Optimizations of Reflectarray Antennas for Wide-Angle Beam Scanning Performance // IEEE Transactions on Antennas and Propagation. 2013. V. 61. № 9. P. 4588–4597.
DOI: 10.1109/TAP.2013.2264795. - Li C., Xu S., Yang F., Li M. Design and Optimization of a Mechanically Reconfigurable Reflectarray Antenna with Pixel Patch Elements Using Genetic Algorithm // In 2019 IEEE MTT-S International Wireless Symposium (IWS). Guangzhou, China. 2019. P. 1–3. DOI: 10.1109/IEEE-IWS.2019.8804092.
- Mei P., Zhang S., Pedersen G. F. A Low-Cost, High-Efficiency and Full-Metal Reflectarray Antenna with Mechanically 2-D Beam-Steerable Capabilities for 5G Applications. IEEE Transactions on Antennas and Propagation. 2020. V. 68. № 10. P. 6997–7006. DOI: 10.1109/TAP.2020.2993077.
- Kamoda H., Iwasaki T., Tsumochi J., Kuki T., Hashimoto O. 60-GHz Electronically Reconfigurable Large Reflectarray Using
Single-Bit Phase Shifters. IEEE Transactions on Antennas and Propagation. 2011. V. 59. № 7. P. 2524–2531.
DOI: 10.1109/TAP.2011.2152338. - Karnati K.K., Trampler M.E., Gong X. A Monolithically BST-integrated Ka-Band Beamsteerable Reflectarray Antenna //
IEEE Transactions on Antennas and Propagation. 2017. V. 65. № 1. P. 159–166. DOI: 10.1109/TAP.2016.2627007. - Li X. et al. Broadband Electronically Scanned Reflectarray Antenna with Liquid Crystals // IEEE Antennas and Wireless Propagation Letters. 2021. V. 20. № 3. P. 396–400. DOI: 10.1109/LAWP.2021.3051797.
- Encinar J.A. Design of Two-Layer Printed Reflectarrays Using Patches of Variable Size. IEEE Transactions on Antennas and Propagation. 2001. V. 49. № 10. P. 1403–1410. DOI: 10.1109/8.954929.
- Visentin T., Keusgen W., Weiler R. Dual-Polarized Square-Shaped Offset-Fed Reflectarray Antenna with High Gain and High Bandwidth in the 60 GHz Domain. In 2015 9th European Conference on Antennas and Propagation (EuCAP). Lisbon. Portugal. 2015. P. 1–5.
- Pan H.K., Horine B.D., Ruberto M., Ravid S. Mm-wave Phased Array Antenna and System Integration on Semi-Flex Packaging. In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI). Spokane. WA. USA. 2011. P. 2059–2062.
DOI: 10.1109/APS.2011.5996913. - Bolkhovskaya O., Maltsev A., Seleznev V., Bolotin I. Cost-efficient RAA Technology for Development of the High-Gain Steerable Antennas for mmWave Communications // In Machine Learning and Artificial Intelligence. 2020. V. 332. P. 346–353.
DOI: 10.3233/FAIA200800. - Yang J., Shen Y., Wang L., Meng H., Dou W., Hu S. 2-D Scannable 40-GHz Folded Reflectarray Fed by SIW Slot Antenna in
Single-Layered PCB // IEEE Transactions on Microwave Theory and Techniques. 2018. V. 66. № 6. P. 3129–3135.
DOI: 10.1109/TMTT.2018.2818698.