350 rub
Journal Radioengineering №3 for 2022 г.
Article in number:
Robust algorithm for detecting radio signals under conditions of a priori uncertain noise parameters
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202203-06
UDC: 621.391
Authors:

V.S. Kostennikov

Military Educational and Scientific Center of the Air Force «N.E. Zhukovsky and Yu.A. Gagarin Air Force Academy» (Voronezh, Russia)

Abstract:

Problem statement. Creating radio-engineering systems designed to improve detection characteristics, data is used that provides knowledge of a priori information about signal parameters and the influence of noise. However, the information about the noise parameters is unknown in advance, because it represents the distribution of a random process with a priori uncertain probabilistic characteristics. The ambiguity of noise is also affected by the non-identity of the characteristics of the elements of the receiving paths of the channels of the system. Therefore, it is of interest to develop algorithms implemented in the condition of stochastic changes in the noise of the receiving equipment.

Purpose. To develop a robust algorithm for detecting radio signals in conditions of a priori uncertain noise parameters by applying the approximation of piecewise linear and nonlinear decision functions of threshold devices.

The obtained results A robust algorithm for detecting radio signals under the condition of stochastic changes in the noise of the receiving equipment has been developed, which allows obtaining the best detection characteristics for a smaller number of measurements with an uncertainty zone formed. It is shown that in some reception conditions, the detection characteristics of the proposed algorithm have higher values of the probability of correct detection than the characteristics of the adaptive one.

Practical significance. The proposed detection algorithm allows calculating the threshold value for piecewise linear or nonlinear approximations of the critical functions of threshold devices, taking into account noise coefficients, uncertainty zones from previously defined primary parameters and forming a rule for making a decision about detection.

Pages: 58-67
For citation

Kostennikov V.S. Robust algorithm for detecting radio signals under conditions of a priori uncertain noise parameters. Radiotekhnika. 2022. V. 86. № 3. P. 58−67. DOI: https://doi.org/10.18127/j00338486-202203-06 (In Russian)

References
  1. Tihonov V.I. Staticheskaja radiotehnika. M.: Sovetskoe radio. 1966. 622 s. (In Russian).
  2. Levin B.R. Teoreticheskie osnovy statisticheskoj radiotehniki. M.: Radio i svjaz', 1989. 656 s. ISBN 5-256-00264-3 (In Russian).
  3. Buhanec D.I., Nikol'skij Ju.V., Korchak V.Ju. Snizhenie urovnja shumov vo vhodnyh traktah mnogofunkcional'nyh RLS. Novye issledovanija v razrabotke tehniki i tehnologij. 2015. № 2. S. 59–64 (In Russian).
  4. Zhang J., Liu Z., Lu W., Chen H., Wu B., Liu Q. A low profile tunable microwave absorber based on graphene sandwich structure and high impedance surface. International Journal of RF and Microwave Computer-Aided Engineering. 2020. V. 30. № 2. P. 1–5.
    DOI: 10.1002/mmce.22022.
  5. Zhou H., Hu G., Shi J., Xue B. Adaptive two-step Bayesian generalized likelihood ratio test algorithm for low-altitude detection. IEICE Transactions on Communications. 2019. V. E102B. № 3. P. 571–580. DOI: 10.1587/transcom.2017EBP3418.
  6. Huang H.A, Yuan C. Sequential Cooperative Spectrum Sensing Algorithm Based on Dynamic Adaptive Double-threshold Energy Detection. Dianzi Yu Xinxi Xuebao. 2018. V. 40. № 5. P. 1037–1043. DOI: 10.11999/JEIT170731.
  7. Biao W., Yang W., He C., Yu F. An adaptive data detection algorithm based on intermittent chaos with strong noise background.
    Neural Computing & Applications. 2020. V. 32. № 22. P. 16755–16762. DOI: 10.1007/s00521-018-3839-9.
  8. Chen X., Huang Y., Guan J., Yu X. Adaptive Clutter Suppression and Detection Algorithm for Radar Maneuvering Target with High-Order Motions Via Sparse Fractional Ambiguity Function. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2020. V. 13. P. 1515–1526. DOI: 10.1109/JSTARS.2020.2981046.
  9. Bogdanovich V.A., Vostrecov A.G. Adaptivnoe obnaruzhenie i ocenivanie shirokopolosnyh signalov na fone shuma i meshajushhih signalov s neizvestnymi harakteristikami. Izvestija vuzov Rossii. Radiojelektronika. 2006. № 5. S. 15–26 (In Russian).
  10. Milashhenko E.A., Jazovskij A.A. Realizacija sposoba adaptivnogo nelinejnogo podavlenija negaussovskih pomeh v kogerentnom polosovom priemnom trakte i ocenka ego jeffektivnosti. Vestnik moskovskogo jenergeticheskogo instituta. 2019. № 5. S. 142–149
    (In Russian).
  11. Volchkov V.P., Taktakishvili V.G. Mnogogipoteznyj algoritm radiolokacionnogo slezhenija s adaptaciej po porogu obnaruzhenija.
    Fundamental'nye problemy radiojelektronnogo priborostroenija. 2017. T. 17. № 4. S. 977–980 (In Russian).
  12. Vasjukov V.N., Bondarenko V.V. Adaptivnyj vybor poroga pri kontrastnom obnaruzhenii ob’ektov neopredelennoj formy na nerovnom fone. Doklady Akademii nauk vysshej shkoly Rossijskoj Federacii. 2013. № 2(21). S. 34–45.
  13. Oo N.H., Risdianto A.C., Ling T.C., Maw A.H. Flooding attack detection and mitigation in SDN with modified adaptive threshold algorithm. International Journal of Computer Networks and Communications. 2020. V. 12. № 3. P. 75–95. DOI: 10.5121/ijcnc.2020.12305.
  14. Marchuk V.I., Rumjancev K.E. Analiz metodov adaptacii porogovogo znachenija pri obnaruzhenii anomal'nyh izmerenij. Izvestija vysshih uchebnyh zavedenij Rossii. Radiojelektronika. 2006. № 1. S. 29–34 (In Russian).
  15. Lozovskij I.F. Algoritmy obnaruzhenija shirokopolosnyh signalov s postojannym urovnem lozhnyh trevog. Uspehi sovremennoj radiojelektroniki. 2021. T. 75. № 3. S. 53–61. DOI: 10.18127/j20700784-202103-03 (In Russian).
  16. Reshetnjak V.N., Tjapkin V.N., Gladyshev A.B., Dmitriev D.D., Gricenko S.N., Loj V.V., Andronov A.V. Osnovy postroenija radiolokacionnoj stancii 1L117. Krasnojarsk: Sib. feder. un-t. 2017. 386 s. (In Russian).
  17. Nevolin V.I. Robastnye informacionnye sistemy. Metody sinteza i analiza. M.: Radio i svjaz'. 2008. 312 s. (In Russian).
  18. Peter J. Huber Robust Statistics. John Wiley & Sons. 2005. 320 p.
  19. Bogdanovich V.A., Vostrecov A.G., Hajlo N.S. Adaptivnye asimptoticheski robastnye invariantnye algoritmy demoduljacii signalov. Trudy XII Mezhdunar. konf. «Aktual'nye problemy jelektronnogo priborostroenija» (APJeP-2014). Novosibirsk, 02–04 oktjabrja 2014 g. Novosibirsk: Izd-vo Novosibirskogo gosud. tehnich. un-ta. 2014. S. 175–180 (In Russian).
  20. Agilent Technologies. Fundamentals of RF and Microwave Noise Figure MeasurementsAgilent Technologies. [Jelektronnyj resurs]. Rezhim dostupa: https://www.agilent.com/en/library/ 1634566308&tld.pdf (data obrashhenija 18.10.2021).
  21. Popov A.A., Bilevich D.V., Salnikov A.S., Dobush I.M., Goryainov A.E., Kalentyev A.A., Metel A.A. A combined technique for amplifier oriented small-signal noise model extraction. International Journal of RF and Microwave Computer-Aided Engineering. 2020. V. 30. № 9. P. 3–7. DOI: 10.1002/mmce.22273.
  22. Vorozhcov A.L. Ocenka pogreshnosti pri vybore reshenija po izmereniju kojefficienta shuma v SVCh-diapazone. Sb. dokladov Vseross. jubilejnoj nauch.-tehnich. konf. «Sovremennoe sostojanie i perspektivy razvitija special'nyh sistem radiosvjazi i radioupravlenija». Omsk. 2019. C. 184–191 (In Russian).
  23. MP531 - maloshumjashhij usilitel' H-diapazona chastot. AO «NPF «Mikran» [Jelektronnyj resurs]. Rezhim dostupa: https://www.micran.ru/upload/iblock/72f/MP505_V01.0002.pdf (data obrashhenija 18.10.2021) (In Russian).
  24. MP505 - maloshumjashhij usilitel' L-diapazona. AO «NPF «Mikran» [Jelektronnyj resurs]. Rezhim dostupa: https://www.micran.ru/upload//iblock/72f/MP505_V01.0002.pdf (data obrashhenija 18.10.2021) (In Russian).
  25. Plohov S.N., Shabunin S.N. Vlijanie vzaimodejstvija jelementov antenno-fidernogo trakta radiolokatora na shumovye harakteristiki kanala priema. Vestnik UrFO. Bezopasnost' v informacionnoj sfere. 2020. № 3(37). S. 20–26. DOI: 10.14529/secur200302 (In Russian).
  26. Urjadov V.N., Roshhupkin Ja.V., Bunas V.Ju., Zelenin A.S. Vlijanie shuma predusilitelja vynuzhdennogo rasseivanija Man-del'shtama-Brilljujena na priemsignalov s transformirovannym spektrom. Doklady BGUIR. 2016. № 4(98). S. 10–14 (In Russian).
  27. Nahmanson G.S., Kostennikov V.S., Shmojlov A.O. Vlijanie nelinejnosti reshajushhej funkcii porogovogo ustrojstva na harakteristiki obnaruzhenija radiosignalov. Nelinejnyj mir. 2019. № 3. S. 36‒44 (In Russian).
  28. Nakhmanson G.S., Kostennikov V.S., Shmoilov A.O. Characteristics of Radio-Signal Detection for the Nonlinear Decision Function of a Threshold Device. Radiophysics and Quantum Electronics. 2020. V. 62. № 10. P. 713–719. DOI: 10.1007/s11141-020-10017-z.
  29. Volobuev M.F., Kostennikov V.S., Shmojlov A.O. Matematicheskaja model' korreljacionnogo priemnika c kusochno-linejnoj approksimaciej reshajushhej funkcii porogovogo ustrojstva. Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. 2021. T. 17.
    № 4. S. 92–98. DOI: 10.36622/VSTU.2021.17.4.012 (In Russian).
  30. Svidetel'stvo o gosudarstvennoj registracii programmy dlja JeVM № 2021665890, zareg. 05.10.2021 g. Statisticheskoe modelirovanie i raschet harakteristik obnaruzhenija radiosignalov. Shmojlov A.O., Kostennikov V.S., Volobuev M.F. (In Russian).
Date of receipt: 21.10.2021
Approved after review: 16.11.2021
Accepted for publication: 28.02.2022