350 rub
Journal Radioengineering №3 for 2022 г.
Article in number:
Comparative statistical analysis of radio navigation parameters estimates in a GPS signal tracking loop with various methods of its construction
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202203-05
UDC: 537.86; 621.37
Authors:

M.M. Kanouj1, A.V. Klokov2

1,2 NR TSU (Tomsk, Russia)

 

Abstract:

In conventional GPS receiver the carrier tracking system is the key stage that keeps the receiver locked to radio navigation parameters (RNP) of the received signal. The most commonly used approaches to the tracking system are: phase lock loop (PLL), frequency lock loop (FLL) and FLL-assisted-PLL. The main limitation of the above approaches is that their performance deteriorates when working with weak signals, and under high dynamic conditions. In recent years, Kalman filter (KF)-based tracking loop architectures have gained much attention due to its robust and better performance compared with conventional architectures. This paper proposes an algorithm of unscented Kalman filter (UKF) to estimate RNP in a GPS receiver tracking system. The proposed tracking loop is responsible of estimating the following RNPs: carrier phase, Doppler frequency and its change rate. The proposed tracking loop is designed to work in some low dynamic and weak signal circumstances such as indoor pedestrian and urban vehicle navigation. The RNP estimates obtained in the proposed method are compared to similar estimations of a conventional tracking (FLL-assisted-PLL) and a linear KF-based tracking methods. Monte Carlo simulations are performed to compare the statistical characteristics of RNP estimates in the three tracking methods. Simulations are performed in terms of the tracking probability, sensitivity, accuracy and bit error rate (BER). Compared with the conventional and KF-based tracking methods, the UKF-based tracking method improves the tracking sensitivity by 9 dB and 3 dB, respectively. It also shows higher accuracy and lower bit BER than the other two methods.

 

Pages: 46-56
For citation

Kanouj M.M., Klokov A.V. Comparative statistical analysis of radio navigation parameters estimates in a GPS signal tracking loop with various methods of its construction Radiotekhnika. 2022. V. 86. № 3. P. 46−57. DOI: https://doi.org/10.18127/j00338486-202203-05 (In Russian)

References
  1. Kaplan E.D., Hegarty C.G. Understanding GPS: Principles and Applications 2nd ed. Artech House: London. 2006. 703 p.
  2. Perov A.I. Metody i algoritmy optimal'nogo priema signalov v apparature potrebitelej sputnikovyh radionavigacionnyh sistem. M.: Radiotehnika. 2012. 240 s. (In Russian).
  3. Perov A.I. GLONASS. Principy postroenija i funkcionirovanija. M.: Radiotehnika. 2010. 800 s. (In Russian).
  4. Curran J.T., Lachapelle G., Murphy C.C. Improving the Design of Frequency Lock Loops for GNSS Receivers. IEEE Trans. Aerospace and Electronic. Systems. 2012. V. 48. № 1. Р. 850–868.
  5. Shatilov A.Ju. Ispol'zovanie kriterija sryva slezhenija pri ocenke pomehoustojchivosti sledjashhih sistem. Radiotehnika. 2012. № 11.
    S. 29–33 (In Russian).
  6. Kruzhkov D.M, Valivirovich K.R. Modifikacija algoritmov funkcionirovanija bortovoj integrirovannoj navigacionnoj sistemy avtonomnogo kosmicheskogo apparata. Trudy MAI. 2013. № 68. S. 1–20 (In Russian).
  7. Won J.H., Pany T., Eissfeller B. Characteristics of Kalman Filters for GNSS Signal Tracking Loop. IEEE Transactions on aerospace and Electronic Systems. 2012. V. 48. № 4. Р. 3671–3681.
  8. Zhang H., Xu L., Yan B., Luo L.A. A Carrier Estimation Method Based on MLE and KF for Weak GNSS Signals. Sensors. 2017. № 17. Р. 1468.
  9. Yang R., Ling K., Poh E., Morton Y.Т. Generalized GNSS Signal Carrier Tracking: Part II-Optimization and Implementation. IEEE Transactions on aerospace and electronic systems. 2017. V. 53. № 4. Р. 1781–1797.
  10. Yang R., Xu D., Morton Y.T. Generalized Multifrequency GPS Carrier Tracking Architecture: Design and Performance Analysis.
    IEEE Transactions on aerospace and electronic systems. 2019. V. 56. № 4. Р. 2548–2563.
  11. Zeng C., Li W., Bi B., Chen Q. Application of Extended Kalman Filter Based Semi-Codeless for Tracking High Dynamic GPS L2 Signal. IEEE 2nd International Conference on Frontiers of Sensors Technologies. 2017. Р. 284–289.
  12. Psiaki L.M., Jung H. Extended Kalman Filter Methods for Tracking Weak GPS Signals. Proc. ION GPS. 2002. Р. 2539–2553.
  13. Ziedan N.I. GNSS receivers for weak signals, Artech house: Boston, London. 2006. 234 p.
  14. Introduction to random signals and applied Kalman filtering. 4th ed. Eds. R.G. Brown and P.Y.C. Hwang. John Wiley & Sons, Hoboken, NJ, USA. 2012. 383 p.
  15. Niu X., Li B., Ziedan N., et al. Analytical and simulation-based comparison between traditional and Kalman filter-based phase-locked loops. GPS Solutions. 2017. V. 21. № 1. Р. 123-135.
  16. Wang X., Ji X., Feng S., Calmettes V. A high-sensitivity GPS receiver carrier-tracking loop design for high-dynamic applications. GPS Solutions. 2015. V. 19. № 2. Р. 225–236.
  17. Ponomarev G.A., Ponomareva V.N., Jakubov V.L. Statisticheskie metody v radiofizike. Tomsk: Izd-vo Tomskogo un-ta. 1989. 235 s. (In Russian).
  18. Shavrin V.V., Filimonov V.A., Lebedev V.Ju., Tislenko V.I., Kravec A.P., Konakov A.S. Kvazioptimal'naja ocenka parametrov signalov GNSS v rezhime kogerentnogo prijoma s ispol'zovaniem algoritma sigma-tochechnogo fil'tra Kalmana. Giroskopija i navigacija. 2016. № 3(94). C. 26–37 (In Russian).
  19. Parkinson B.W., Spilker J.J., Axelrad P., Enge P. Global Positioning System Theory and Applications. AIAA. V. I. Washington. 1996. 465 p.
  20. Kanuzh M.M., Klokov A.V., Parvatov G.N., Potekaev A.E. Novyj podhod v sozdanii GPS-sistem pozicionirovanija v dinamicheskih uslovijah priema s vysokim urovnem shumov. Fizika. 2021. T. 64. № 7. S. 134–144 (In Russian).

 

Date of receipt: 07.10.2021
Approved after review: 18.11.2021
Accepted for publication: 28.02.2022