350 rub
Journal Radioengineering №2 for 2022 г.
Article in number:
Model of an electro-optical devices in the conditions of its active pulsed laser sounding as an object with a non-local reflection
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202202-02
UDC: 623.62
Authors:

V.D. Popelo1, P.E. Kuleshov2, D.K. Proskurin3, I.I. Chernukho4

1-4 MESC AF "Air Force Academy named after prof. N.E. Zhukovsky and Yu.A. Gagarin" (Voronezh, Russia)

Abstract:

Statement of the problem. With the development of technologies for generating and receiving pulses of optical radiation of various durations and with a high steepness of the edges, it becomes possible to analyze the «fine» structure of impulse responses of optoelectronic devices for the formation of signs of their recognition.

Aim. Development of a model of an optoelectronic device under conditions of probing by pulses of various durations as a linear object with a discrete distribution of scattering centers.

Result. Based on the use of the matrix formalism of geometric optics, a model of an optoelectronic device as a linear object with a discrete distribution of scattering centers in the longitudinal direction has been developed. It is shown that the use of ultrashort probing pulses and pulses with a high edge steepness for optical location of optoelectronic devices causes a significant rearrangement of the location response and complication of its structure. This opens up the possibility of solving the problem of recognizing the type of optoelectronic device based on the design features of its optical system.

Practical significance. The proposed mathematical model can be used to calculate the parameters of the reflection of a location signal with different pulse durations from an optoelectronic device with the subsequent classification of their «rangefinder-brightness
portrait».

Pages: 13-21
For citation

Popelo V.D., Kuleshov P.E., Proskurin D.K., Chernukho I.I. Model of an electro-optical devices in the conditions of its active pulsed laser sounding as an object with a non-local reflection. Radiotekhnika. 2022. V. 86. № 2. P. 13−21. DOI: https://doi.org/10.18127/j00338486-202202-02 (In Russian)

References
  1. Kozirackij Ju.L., Grevcev A.I., Doncov A.A. i dr. Obnaruzhenie i koordinatometrija optiko-jelektronnyh sredstv, ocenka parametrov ih signalov. M.: Radiotehnika. 2015. 456 s. (In Russian).
  2. Popelo V.D., Proskurin D.K., Shmarov A.N. Osobennosti aktivnogo opticheskogo zondirovanija malorazmernyh ob’ektov s nelokal'nym chastichno kogerentnym otrazheniem. Radiotehnika. № 8. 2016. S. 38-44. (In Russian).
  3. Popelo V.D. Model' optiko-jelektronnogo sredstva kak ob’ekta opticheskoj lokacii. Radiotehnika. 2005. № 7. S. 102-104. (In Russian).
  4. Sakjan A.S. Sakjan A.S., Sidorovskij N.V., Starchenko A.N. Primenenie metoda sravnenija pri naturnyh issledovanijah opticheskih harakteristik ob’ektov. Opticheskij zhurnal. 2010. T. 77. № 3. S. 39-43. (In Russian).
  5. Anan'ev Ju.A. Opticheskie rezonatory i problema rashodimosti lazernogo izluchenija. M.: Nauka. 1979. 328 s. (In Russian).
  6. Hannaford P. Femtosecond Laser Spectroscopy. Peter Hannaford. Boston: Springer Science + Business Media, Inc. 2005. 334 p. (In Russian).
  7. Krjukov P.G. Lazery ul'trakorotkih impul'sov i ih primenenie. Dolgoprudnyj: Intellekt. 2012. 248 s. (In Russian).
  8. Popelo V.D. Fiziko-matematicheskaja model' ob’ektov i processov izmerenija harakteristik zametnosti v hode provedenija lazerno-lokacionnogo jeksperimenta. Metrologija. 2011. № 2. S. 13-25. (In Russian).
  9. Born M. Principles of optics/seventh (expanded) edition. Cambridge: Cambridge University Press. 1999. 952 p.
  10. Dzherrard A., Bjorch D.M. Vvedenie v matrichnuju optiku. M.: Mir. 1978. 341 s. (In Russian).
  11. Spravochnik tehnologa-optika. Pod red. M.A. Okatova. SPb: Politehnika. 2004. 679 s. (In Russian).
Date of receipt: 08.12.2021
Approved after review: 21.12.2021
Accepted for publication: 12.01.2022