D.Ya. Sukhanov1, Amoon Khalil2
1,2 National Research Tomsk State University (Tomsk, Russia)
A method for obtaining three-dimensional acoustic images based on probing by a system of multiple transmitters and multiple receivers presented. The proposed placement of transmitters and receivers on a plane provides a low level of artifacts, despite the sparseness of the transmitting and receiving gratings. Signal processing based on multidimensional matched filtering. The use of wideband signals with linear frequency modulation makes it possible to obtain range resolution. The applicability of the method demonstrated on the results of numerical simulation and experimentally for the air environment. In the frequency range of 38-43 kHz, a spatial resolution of 8 mm achieved in the plane parallel to the sounding system.
Sukhanov D.Ya., Amoon Khalil. 3D acoustic imaging based on wideband probing by a system of multiple transmitters and multiple receivers (MIMO). Radiotekhnika. 2022. V. 86. № 12. P. 137−146. DOI: https://doi.org/10.18127/j00338486-202212-13 (In Russian)
- Holmes C., Drinkwater B.W., Wilcox P.D. Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation. NDT & E International. 2005. V. 38. № 8. Р. 701–711. https://doi.org/10.1016/j.ndteint.2005.04.002.
- Hunter A.J., Drinkwater B.W., Wilcox P.D. The wavenumber algorithm for full-matrix imaging using an ultrasonic array. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2008. V.55. № 11. Р. 2450–2462. https://doi.org/10.1109/tuffc.952.
- Jie Zhang, Drinkwater B.W., Wilcox P.D. Comparison of Ultrasonic Array Imaging algorithms for Nondestructive Evaluation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2013. V. 60. № 8. Р. 1732–1745. https://doi.org/10.1109/ tuffc.2013.2754.
- Portzgen N., Gisolf D., Blacquiere G. Inverse wave field extrapolation: A different NDI approach to imaging defects. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2007. V. 54. № 1. Р. 118–127. https://doi.org/10.1109/tuffc.2007.217.
- Velichko A., Wilcox P.D. An analytical comparison of ultrasonic array imaging algorithms. The Journal of the Acoustical Society of America. 2010. V. 127. № 4. Р. 2377–2384. https://doi.org/10.1121/1.3308470.
- Samokrutov A.A., Shevaldykin V.G. Ocenka defektov pri ul'trazvukovom kontrole metodom cifrovoj fokusirovki apertury. uslovija, vozmozhnosti, granicy primenimosti. Kontrol'. Diagnostika. 2017. № 9. S. 6-18. DOI: 10.14489/td.2017.09.pp.006-018 (In Russian).
- Wang Q.H., Ivanov T., Aarabi P. Acoustic robot navigation using distributed microphone arrays. Information Fusion. 2004. V. 5.
№ 2. Р. 131–140. DOI: 10.1016/j.inffus.2003.10.002. - Zhuge X., Yarovoy A.G. Three-dimensional near-field MIMO array imaging using range migration techniques. IEEE Trans. Image Process. Jun. 2012. V. 21. № 6. Р. 3026–3033.
- Grinev A.Ju., Temchenko V.S., Bagno D.V. Radary podpoverhnostnogo zondirovanija. Monitoring i diagnostika sred i ob’ektov. Radiotehnika. 2013 (In Russian).
- Sheen D.M., McMakin D.L., Hall T.E. Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Transactions on Microwave Theory and Techniques. 2001. V. 49. № 9. Р. 1581–1592. https://doi.org/10.1109/22.942570.
- Pinchera D., Migliore M.D., Schettino F., Lucido M., Panariello G. An Effective Compressed-Sensing Inspired Deterministic Algorithm for Sparse Array Synthesis. IEEE Transactions on Antennas and Propagation. 2018. V. 66. № 1. Р. 149–159. https://doi.org/10.1109/tap.2017.2767621.
- Pinchera D. On the Trade-Off between the Main Parameters of Planar Antenna Arrays. Electronics. 2020. V. 9. № 5. Р. 739. https://doi.org/10.3390/electronics9050739.
- Goldsmith P.F., Hsieh C. Huguenin G.R., Kapitzky J., Moore E.L. Focal plane imaging systems for millimeter wavelengths. IEEE Transactions on Microwave Theory and Techniques. Oct. 1993. V. 41. № 10. Р. 1664-1675. DOI: 10.1109/22.247910.
- Stolt R. Migration by Fourier transform techniques. Geophys. 1978. V. 43. № 1. Р. 23–48.
- Zhuge X., Yarovoy A.G., Savelyev T.G., Ligthart L.P. Modified Kirchhoff migration for UWB MIMO array-based radar imaging. IEEE Trans. Geosci. Remote Sens. Jun. 2010. V. 48. № 6. Р. 2692–2703.
- Mailloux R.J. Phased array antenna handbook. Artech House. 2018.
- Liang S., Fang Z., Sun G., Liu Y., Qu G., Zhang Y. Sidelobe Reductions of Antenna Arrays via an Improved Chicken Swarm Optimization Approach. IEEE Access. 2020. № 8. Р. 37664–37683. https://doi.org/10.1109/access.2020.2976127.
- Wang Z., Chang T., Cui H.-L. Review of Active Millimeter Wave Imaging Techniques for Personnel Security Screening. IEEE Access. 2019. № 7. Р. 148336–148350. https://doi.org/10.1109/access.2019.2946736.
- Slukin G.P., Fedorov I.B., Chapurskij V.V. Sravnitel'nyj analiz klassicheskih RSA i MIMO RSA v zadachah distancionnogo zondirovanija zemli. Radiotehnika. 2017. № 11. S. 97-103. EDN YPKGVG (In Russian).
- Haupt R.L., Menozzi J.J., McCormack C.J. (n.d.). Thinned arrays using genetic algorithms. Proceedings of IEEE Antennas and Propagation Society International Symposium. https://doi.org/10.1109/aps.1993.385248.
- Guo H., Jing G., Dong M., Zhang L., Zhang X. Position-only synthesis of uniformly excited elliptical antenna arrays with minimum element spacing constraint. EURASIP Journal on Wireless Communications and Networking. 2019. № 1. https://doi.org/10.1186/s13638-019-1574-2.
- Fuchs B. Synthesis of Sparse Arrays with Focused or Shaped Beampattern via Sequential Convex Optimizations. IEEE Transactions on Antennas and Propagation. 2012. V. 60. № 7. Р. 3499–3503. https://doi.org/10.1109/tap.2012.2196951.
- Suhanov D.Ja., Kalashnikova M.A. Distancionnaja ul'trazvukovaja defektoskopija zvukoizluchajushhih ob’ektov cherez vozduh. Akusticheskij zhurnal. 2014. № 60. S. 279-283 (In Russian).