350 rub
Journal Radioengineering №12 for 2022 г.
Article in number:
Active sensor with remote control for diagnostics of broadband ionospheric radio channels with OFDMBPSK-signals
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202212-08
UDC: 621.391.83
Authors:

D.V. Ivanov1, V.A. Ivanov2, N.V. Ryabova3, A.A. Elsukov4, N.A. Konkin5

1-5 Volga State University of Technology (Yoshkar-Ola, Russia)

Abstract:

The problem of ionospheric radio communication is the variability of the operating frequency range and radio channel parameters in geophysical time. Therefore, the task of creating active radio sensors to improve ionospheric tactical communication is topical. The challenge is to create a sensor that performs diagnosing for a minimum time, has a minimum power, and provides an opportunity to increase the number of data users through the remote control of its terminals and data processing. Purpose: the development of methods, their algorithms and software tools for creating an active sensor operating in the mode of simultaneous-sequential sounding of ionospheric channels by spread spectrum signals with the possibility of organizing remote interaction with users. Results: We developed methods for digital synthesis and processing of multi-carrier OFDM signals with spectrum spreading of partials by BPSK, taking into account the features of the discrete Fourier transform. In addition to this, we proposed a system for remote control of the sensor and a method for analyzing the parameters of HF radio channels, which allow one to plan the diagnosing process and remotely obtain real-time data on the main parameters of the diagnosed communication links. The paper presents the findings of experimental verification of the developed approaches for the case of operation of a tactical HF communication system on NVIS links. The study proved their reliability and the advantages of the sensor of ionospheric radio channels. Practical relevance: The use of active sensors in advanced cognitive HF communication systems contributes to the solution of the current main problems of ensuring a more uniform use of partial channels, increasing communication noise immunity, modem performance, reducing radiated power and enhancing opportunities for communication users.

Pages: 90-104
For citation

Ivanov D.V., Ivanov V.A., Ryabova N.V., Elsukov A.A., Konkin N.A. Active sensor with remote control for diagnostics of broadband ionospheric radio channels with OFDM-BPSK-signals. Radiotekhnika. 2022. V. 86. № 12. P. 90−104. DOI: https://doi.org/10.18127/ j00338486-202212-08 (In Russian)

References
  1. Poljakov V.T. NVIS - tehnika blizhnej svjazi na KV. Spectehnika i svjaz'. 2009. № 1. S. 59-63 (In Russian).
  2. Giorgetti A, Sithamparanathan K. Cognitive Radios Techniques: Spectrum Sensing, Interference Mitigation and Localization. London: Artech House. 2012. 369 p.
  3. Murav'ev I.V., Bahtin A.A. Issledovanie metodov sozdanija intellektual'nyh sistem svjazi, adaptirujushhihsja k slozhnoj radiochastotnoj obstanovke, na osnove tehnologii kognitivnogo radio. T-Comm: Telekommunikacii i transport. 2012. T. 6. № 9. S. 104-106 (In Russian).
  4. Kandaurova E. O., Chirov D.S. Razrabotka programmnogo kompleksa intellektual'noj perestrojki rabochih chastot dlja sistem kognitivnogo radio. Jelektrosvjaz'. 2021. № 2. S. 43-47. DOI: 10.34832/ELSV.2021.15.2.006 (In Russian).
  5. Ivanov D.V., Ivanov V.A., Rjabova N.V., Elsukov A.A. Problemy vertikal'nogo zondirovanija ionosfery slozhnymi signalami minimal'noj moshhnosti. Vestnik Povolzhskogo gosudarstvennogo tehnologicheskogo universiteta. Ser. Radiotehnicheskie i infokommunikacionnye sistemy. 2021. № 2(50). S. 6-20. DOI: 10.25686/2306-2819.2021.2.6 (In Russian).
  6. Ratovskij K.G., Potehin A.P., Medvedev A.V., Kurkin V.I. Sovremennyj cifrovoj ionozond DPS-4 i ego vozmozhnosti. Solnechno-zemnaja fizika. 2004. № 5(118). S. 102-104 (In Russian).
  7. Kuz'min A.V., Kanaev A.S. Sredstva vertikal'nogo radiozondirovanija ionosfery. Geliogeofizicheskie issledovanija. 2012. № 2. S. 72-82 (In Russian).
  8. Krasheninnikov I.V. Analiz tipov zondirujushhih signalov v zadache ionosfernogo radiozondirovanija i kriterii jeffektivnosti ispol'zovanija kosmicheskih sistem dlja provedenija transionosfernogo monitoringa v Arktike. Geliogeofizicheskie issledovanija. 2016. № 14. S. 53-62 (In Russian).
  9. Podlesnyj A.V., Bryn'ko I.G., Kurkin V.I., Berezovskij V.A., Kiseljov A.M., Petuhov E.V. Mnogofunkcional'nyj LChM-ionozond dlja monitoringa ionosfery. Geliogeofizicheskie issledovanija. 2013. № 2(4). S. 24-31 (In Russian).
  10. Vertogradov G.G., Urjadov V.P., Vertogradov V.G., Vertogradova E.G., Kubatko S.V., Valov V.A. Mnogofunkcional'nyj kompleks dlja naklonnogo zondirovanija na baze ionozonda-radiopelengatora. Zhurnal radiojelektroniki. 2010. № 12. S. 1-18 (In Russian).
  11. Kuz'min A.V., Kucherina V.M., Razhev A.N. Kompleks monitoringa ionosfery na baze ionozonda «Avgur-D». Geliogeofizicheskie issledovanija. 2013. № 4. S. 111-119 (In Russian).
  12. Sveshnikov Ju.K., Zubkov M.P., Sizikov V.D., Krival'cevich S.V. Issledovanie vozmozhnosti umen'shenija vremeni zondirovanija chetyrehkanal'nym LChM-ionozondom. Tehnika radiosvjazi. 2014. № 3(23). S. 51-60.
  13. Oppenheim A., Schafer R. Digital Signal Processing. Hoboken: Prentice-Hall. 1975. 585 p.
  14. Indeksacija i perestanovka spektral'nyh otschetov diskretnogo preobrazovanija Fur'e [Jelektronnyj resurs] DSPLIB.org. URL: https://ru.dsplib.org/content/dft_freq/dft_freq.html (data obrashhenija: 16.08.2022).
  15. Ryabova N.V., Ivanov D.V., Ivanov V.A., Elsukov A.A. Processing Multicarrier Phase Coded Signals with OFDM on the USRP Platform for NVIS Sounding of HF Radio Channels. 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). 2020. P. 1-6. DOI: 10.1109/SYNCHROINFO49631.2020.9166059.
  16. Newman D.J. An L1 external problem for polynomials. Proceedings of the American mathematical society. 1965. V. 16.
    P. 1287-1290.
  17. Ivanov D.V., Ivanov V.A., Elsukov A.A. Razrabotka i ispytanie apparatno-programmnogo kompleksa dlja nazemnogo monitoringa ionosfery s primeneniem SDR-tehnologii, slozhnyh zondirujushhih fazo-kodo-manipulirovannyh signalov i kvadraturnoj obrabotki. Vestnik Povolzhskogo gosudarstvennogo tehnologicheskogo universiteta. Ser. Radiotehnicheskie i infokommunikacionnye sistemy. 2019. № 2(42). S. 71-85. DOI: 10.25686/2306-2819.2019.2.71 (In Russian).
  18. Konkin N.A., Pasova A.D. Mashinnoe obuchenie v zadache prognozirovanija vremennyh rjadov MPCh korotkovolnovyh kanalov radiosvjazi. Arhivarius. 2021. T.7. № 8(62). S. 29-31 (In Russian).
  19. PostgreSql Documentation [Jelektronnyj resurs] PostgreSQL.org URL: https://www.postgresql.org/docs/ (data obrashhenija: 16.08.2022).
  20. Introducing JSON [Jelektronnyj resurs] json.org URL: https://www.json.org/json-en.html (data obrashhenija: 16.08.2022).
  21. Ivanov V.A. Ivanov D.V. Ryabova N.V. Malcev A.V. Adaptivnoe obnaruzhenie i vydelenie shirokopolosnogo signala s linejnoj chastotnoj modulyaciej pri szhatii ego v chastotnoj oblasti EHlektromagnitnye volny i ehlektronnye sistemy 2009. T. 14. № 8. S. 34-45 (In Russian).
  22. Sklyarevskij M.S. Vertogradov G.G. Vliyanie peremeshchayushchihsya ionosfernyh vozmushchenij na rasprostranenie dekamet rovyh voln po rezultatam izmerenij s pomoshchyu linejno chastotno modulirovannogo radiopelengatora. Radiotekhnika 2019. T. 83. № 8(11). S. 75-84 (In Russian).
Date of receipt: 24.11.2022
Approved after review: 28.11.2022
Accepted for publication: 01.12.2022