350 rub
Journal Radioengineering №12 for 2022 г.
Article in number:
Using pseudolites to improve the accuracy and reliability of satellite navigation
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202212-06
UDC: 629.7.05
Authors:

A.R. Bestugin1, I.A. Kirshina2, O.I. Sauta3

1-3 Saint-Petersburg State University of Aerospace Instrumentation (Saint-Petersburg, Russia)

Abstract:

Formulation of the problem. The low noise immunity of global navigation satellite systems (GNSS) requires the search for ways and means to support the solution of navigation and landing tasks of both manned aircraft (VS) and unmanned aircraft systems (UAS). One of the effective ways to solve this problem is the use of pseudosatellites (PS) operating in the ranges of the radio frequency spectrum allocated for GNSS signals and using standard GNSS signal formats. However, the task of creating a network of PS in itself requires a reasonable choice of both the basic principles of their functioning and the solution of a number of issues related to their placement on the ground, including in the area of the airfield, determining the operating frequency range, scope, as well as issues of interaction of PS with the navigation equipment of consumers (NAP) GNSS.

Target. Determination of alternative directions for building navigation and landing systems based on the use of the format and frequency range of GLONASS signals in the equipment of ground-based pseudo-satellites to improve the accuracy and reliability of navigation support for flights of manned aircraft and unmanned aerial systems using global navigation satellite systems as the main means of navigation.

Results. The concept of building a network of navigation ground-based substations emitting radio signals in the frequency range and format of GLONASS signals is considered. It is shown that the use of such SS, combined with the existing network of aviation ground-based rangefinding radio beacons (DME), allows not only to significantly improve the accuracy and reliability of the navigation field, but also to ensure aircraft and UAS navigation in the event of various types of interference with GNSS operation.

Practical significance. Building a network of ground-based SS, combined, for example, with the existing ground-based radio beacons of aviation rangefinders, makes it possible to effectively solve the problem of maintaining the accuracy and reliability characteristics of aircraft and UAS navigation determinations. The network of terrestrial PSs is able not only to improve the accuracy and integrity of navigation definitions when used in conjunction with GNSS satellites, but also to provide navigation in the absence of signals from GNSS satellites. The hardware implementation of building such a PS network requires significantly lower costs compared to other options for implementing an alternative GNSS navigation.

Pages: 69-78
For citation

Bestugin A.R., Kirshina I.A., Sauta O.I. Using pseudolites to improve the accuracy and reliability of satellite navigation. Radiotekhnika. 2022. V. 86. № 12. P. 69−78. DOI: https://doi.org/10.18127/j00338486-202212-06 (In Russian)

References
  1. Global'nyj ajeronavigacionnyj plan na 2016–2030 gg. Mezhdunarodnaja organizacija grazhdanskoj aviacii. Izd-e 5. 2016 (In Russian).
  2. Locata R.C. A Positioning System for Indoor and Outdoor Applications Where GNSS Does Not Work. APAS2013. Canberra, Australia. 2013.
  3. Rukovodstvo po navigacii, osnovannoj na harakteristikah (PBN). IKAO. 2013 (In Russian).
  4. Dokument IKAO: NSP WGW/IP_13. Alternative Positioning, Navigation and Timing (PNT) study. IKAO. 2011 (In Russian).
  5. Baburov V.I., Vasil'eva N.V., Ivancevich N.V., Panov Je.A. Sovmestnoe ispol'zovanie navigacionnyh polej sputnikovyh radionavigacionnyh sistem i setej psevdosputnikov. SPB: RDK-print. 2005. 264 s. (In Russian).
  6. Shebshaevich V.S., Dmitriev P.P., Ivancevich N.V i dr. Setevye sputnikovye radionavigacionnye sistemy. Izd-e 2-e, pererab. i dop. M.: Radio i svjaz'. 1993. 415 s. (In Russian).
  7. Baburov V.I., Ivancevich N.V., Vasil'eva N.V. Issledovanie metoda korrekcii koordinat pri mestoopredelenijah po dvum sputnikovym sistemam. Trudy XXIX Sankt-Peterburgskoj Mezhdunar. konf. po integrirovannym navigacionnym sistemam (30 maja – 1 ijunja 2022 g.). SPb: Obshhestvo informatiki, vychislitel'noj tehniki, sistem svjazi i upravlenija. 2022. S. 329-333 (In Russian).
  8. Antohina Ju.A., Baburov S.V., Bestugin A.R., Perelomov V.N., Sauta O.I. Razvitie navigacionnyh tehnologij dlja povyshenija bezopasnosti poletov. Pod. red. Ju.G. Shatrakova. SPb: GUAP. 2016. 298 s. (In Russian).
  9. Prilozhenie 10 k Konvencii o mezhdunarodnoj grazhdanskoj aviacii. Aviacionnaja jelektrosvjaz'. Radionavigacionnye sredstva. Izd-e 6-e. Ijul' 2006 g. T. I. WAAS (In Russian).
  10. Global'naja navigacionnaja sputnikovaja sistema GLONASS. Interfejsnyj kontrol'nyj dokument. Red. 5.1. 2008 (In Russian).
  11. Zasedanie Gosudarstvennoj komissii po radiochastotam, protokol № 1-8 ot 24 ijulja 2000 g. (In Russian).
  12. Kazarinov Ju.M. i dr. Radiotehnicheskie sistemy: monografija. M.: Izd-vo Centr «Akademija». 2008. 592 s. (In Russian).
  13. RTCA/DO-229C. Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment. Рrepared by SC 159, RTCA, Inc. Washington. 2006. 564 p.
  14. Bestugin A.R., Kirshina I.A., Sauta O.I. Povyshenie tochnosti i nadezhnosti navigacionnoj informacii dlja sistemy avtomaticheskogo upravlenija BLA. Naukoemkie tehnologii. 2021. T. 22. № 8. S. 8-15 (In Russian).
Date of receipt: 02.11.2022
Approved after review: 10.11.2022
Accepted for publication: 01.12.2022