350 rub
Journal Radioengineering №12 for 2022 г.
Article in number:
Analysis of data exchange immunity UAV groups under optimized interference
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202212-03
UDC: 621.391
Authors:

A.M. Chudnov1, B.I. Poligintsev2, Ya.V. Kichko3

1,3 S.M. Budyonny Military Academy of Communications (Saint Petersburg, Russia)

2 Peter The Great St. Petersburg Polytechnic University (Saint-Petersburg, Russia)

Abstract:

Problem statement. The creation and development of unmanned aerial vehicles (UAVs) is one of the priority scientific and technical tasks aimed at improving the efficiency of systems in various sectors of the national economy. The basis for the functioning of the UAV group is the data transmission system (DTS) included in it, which ensures the interaction of the objects of the group with each other and with external objects. Taking into account the specifics of the properties and conditions of use of UAVs, as well as the impact on them of radio interference from other systems, the task of analyzing and optimizing the noise immunity of the DTS to ensure guaranteed exchange of messages between the objects of the group becomes extremely relevant.

Target. To develop a methodology for analyzing the noise immunity of the DTS of a group of UAVs in the class of possible interference with a limitation on the source power, as well as justifying the parameters of the DTS that provide the necessary noise immunity.

Results. The DTS noise immunity level is formally defined as the maximum interference power at which a given probability of timely message delivery is guaranteed. Taking into account the specifics of the study, the problem is formulated in a game-theoretic formulation. The worst (optimized) interference is understood as interference generated by a countersystem (source) with a limited average power, at which the minimum probability of timely message delivery is achieved.

For packet-switched DTS using pseudo-random signals and error-correcting coding, relations are obtained that determine the worst possible interference in the form of a composition of interference power distributions: 1) over signals (signal sub-elements) in radio links to influence the transmission/reception of channel blocks; 2) between DTS objects to disrupt the process of exchanging data packets at the network level. The justification of the system parameters is carried out according to the minimax criterion, which, in the framework of the game-theoretic statement of the problem, corresponds to the problem of maximizing the lower price of the corresponding game of the communication system with the countersystem.

At the physical level, the optimal interference operates in a pulsed mode, the parameters of which are determined based on the information known to the interference source about the design of the data transmission channel and the algorithm of its operation. The indicators of redundancy of pseudo-random signals are determined, at which the maximum information transfer rate is guaranteed. At the DTS network level, the interference energy is optimally distributed among the objects of the UAV group. A technique is given for forming a system of routing tables that route data packets along the shortest routes, taking into account the optimized distribution of interference.

The conditions under which the minimum admissible probability of timely delivery of messages is guaranteed are determined. Examples of calculating the noise immunity indicators of the DTS, as well as the parameters that determine the data exchange algorithm and the strategy for setting the optimized interference, are given. Graphs of dependences of the probability of timely delivery of packets on the interference power are presented, illustrating the methodology for calculating the noise immunity of the DTS.

Practical significance. The proposed method makes it possible to calculate the level of noise immunity of the designed DTS with packet transmission of messages using various types of modulation and coding. Calculations using the technique form the foundation for substantiating technical solutions for the construction and use of algorithms for generating and processing data, as well as routing packets in the UAV DTS with guaranteed compliance with the requirements for the timely delivery of messages.

Pages: 33-46
For citation

Chudnov A.M., Poligintsev B.I., Kichko Ya.V. Analysis of data exchange immunity UAV groups under optimized interference. Radiotekhnika. 2022. V. 86. № 12. P. 33−46. DOI: https://doi.org/10.18127/j00338486-202212-03 (In Russian)

References
  1. Bujari A., Calafate C. T., Cano J. C., Manzoni P., Palazzi C. E., Ronzani D. Flying ad-hoc network application scenarios and mobility models. Int. J. Distrib. Sensor Netw. 2017. Vol. 13. No. 10. P. 1–17. DOI: 10.1177/1550147717738192.
  2. Dovgal' V.A., Dovgal' D.V. Analiz sistem kommunikacionnogo vzaimodejstvija dronov, vypolnjajushhih poiskovuju missiju v sostave gruppy. Vestnik AGU. 2020. № 4(271). S. 87–94 (In Russian).
  3. Anan'ev A.V., Stafeev M.A., Filatov S.V. Ocenka jeffektivnosti sistem svjazi i boevogo upravlenija na baze bespilotnyh letatel'nyh apparatov mezhvidovoj gruppirovki vojsk. Vozdushno-kosmicheskie sily. Teorija i praktika. 2017. № 3(3). S. 75–84.
  4. Borodin V.V., Petrakov A.M., Shevcov V.A. Analiz jeffektivnosti peredachi dannyh v seti svjazi gruppirovki bespilotnyh letatel'nyh apparatov. Trudy MAI. 2015. №81 (In Russian).
  5. Arafat M.Y., Moh S. Routing Protocols for Unmanned Aerial Vehicle Networks: A Survey. IEEE Access. 2019. V. 7. P. 99694–99720. DOI:10.1109/ACCESS.2019.2930813.
  6. Arafat M.Y., Moh S. A survey on cluster-based routing protocols for unmanned aerial vehicle networks. IEEE Access. 2018. V. 7.
    P. 498–516. DOI: 10.1109/ACCESS.2018.2885539.
  7. Hayat S., Yanmaz E., Muzaffar R. Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint. IEEE Communications Surveys & Tutorials. 2016. V. 18. № 4. P. 2624–2661.
  8. Zhou Y., Cheng N., Lu N., Shen X.S. Multi-UAV-aided networks: Aerial-ground cooperative vehicular networking architecture. IEEE Veh. Technol. Mag. 2015. V. 10. № 4. P. 36–44.
  9. Kae Won Choi, Wha Sook Jeon, Dong Geun Jeong. Efficient Load-Aware Routing Scheme for Wireless Mesh Networks. IEEE Transactions on Mobile Computing. 2010. V. 9. № 9. P. 1293–1307.
  10. Vijayakumar K.P., Ganeshkumar P., Anandaraj M. Review on Routing Algorithms in Wireless Mesh Networks. International Journal of Computer Science and Telecommunications. 2012. V. 3. № 5. P. 87–92.
  11. Chudnov A.M., Gubskaja O.A., Kichko Ja.V. Metodika analiza verojatnostno-vremennyh harakteristik obmena soobshhenijami v komplekse bespilotnyh letatel'nyh apparatov. Izvestija TulGu. Tehnicheskie nauki. 2021. № 11. S. 117–124 (In Russian).
  12. Wen S., Huang C. Delay-constrained routing based on stochastic model for flying ad hoc networks. Mobile Inf. Syst. 2018.
    V. 2018. DOI: 10.1155/2018/6056419.
  13. Akyildiz I.F., Wang X., Wang W. Wireless Mesh Networks: A survey. Computer Networks Journal (Elsevier). 2005. V. 47. № 4.
    P. 445–487.
  14. Noubir G. On Connectivity in Ad Hoc Networks under Jamming Using Directional Antennas and Mobility. Lecture Notes in Computer Science. 2004. DOI: 10.1007/978-3-540-24643-5_17.
  15. Bhattacharya S., Başar T. Game-theoretic analysis of an aerial jamming attack on a UAV communication network. Proc. 2010 American Control Conference (ACC 2010). Baltimore, Maryland. 2010. P. 818–823.
  16. Ivanov M.S., Ponamorev A.V., Makarenko S.I. Modelirovanie trafika, peredavaemogo v kanale upravlenija letatel'nym apparatom pri upravlenii im v processe vypolnenija special'nyh zadach. Ch. 1. Model' intensivnosti nestacionarnogo trafika na razlichnyh jetapah poleta. Sistemy upravlenija, svjazi i bezopasnosti. 2021. № 6. S. 120-147. DOI: 10.24412/2410-9916-2021-6-120-147 (In Russian).
  17. Wang B., Wu Y., Liu K.J.R., Clancy T.C. An anti-jamming stochastic game for cognitive radio networks. IEEE Journal on Selected Areas in Communications. 2011. V. 29. № 4. P. 877–889. DOI: 10.1109/JSAC.2011.110418.
  18. Wu Y., Wang B., Liu K.J.R., Clancy T.C. Anti-jamming games in multi-channel cognitive radio networks. IEEE J. Sel. Areas Commun. 2012. V. 30. № 1. P. 4–15.
  19. Sagduyu Y.E., Berry R.A., Ephremides A. Jamming games in wireless networks with incomplete information. IEEE Commun. Mag. 2011. V. 49. № 8. P. 112–118.
  20. Antipenskij R.V., Kuznecov V.A. Algoritm formirovanija signalopodobnyh pomeh radiolokacionnym stancijam s sin-tezirovannoj aperturoj antenny bespilotnyh letatel'nyh apparatov. Radiotehnika. 2021. T. 85. № 5. S. 91−99. DOI: 10.18127/j00338486-202105-09 (In Russian).
  21. Pantenkov D.G., Lomakin A.A. Ocenka ustojchivosti sputnikovogo kanala upravlenija bespilotnymi letatel'nymi ap-paratami pri vozdejstvii prednamerennyh pomeh. Radiotehnika. 2019. T. 83. № 11 (17). S. 43−50. DOI: 10.18127/j00338486-201911(17)-04 (In Russian).
  22. Chudnov A.M., Putilin A.N., Popov A.I. Kompleksnoe upravlenie marshrutizaciej paketov i rezhimami raboty radiosredstv v neodnorodnoj seti peredachi dannyh. Radiotehnicheskie i telekommunikacionnye sistemy. 2019. № 1(33). S. 46–56 (In Russian).
  23. Vorob'ev N.N. Osnovy teorii igr. Beskoalicionnye igry. M.: FIZMATLIT. 1984. 496 s (In Russian).
  24. Chudnov A.M. Teoretiko-igrovye zadachi sinteza algoritmov formirovanija i priema signalov. Problemy peredachi informacii. 1991. T. 27. № 3. S. 57‒65 (In Russian).
  25. Chudnov A.M. Matematicheskie osnovy modelirovanija, analiza i sinteza sistem. SPb: VAS. 2021. 193 s (In Russian).
  26. Chudnov A.M., Kirik D.I., Ermakova E.M. Optimizacija parametrov koda i rezhima obrabotki signalov v uslovijah prednamerennyh pomeh. Trudy uchebnyh zavedenij svjazi. 2019. T. 5. № 4. S. 79–86. DOI:10.31854/1813-324X-2019-5-4-79-86 (In Russian).
  27. Gladkih A.A. Osnovy teorii mjagkogo dekodirovanija izbytochnyh kodov v stirajushhem kanale svjazi. Ul'janovsk: UlGTU. 2010. 379 s (In Russian).
  28. Putilin A.N., Chudnov A.M. Optimizacija priemnika fazomanipulirovannyh psevdosluchajnyh signalov pri naihudshej pomehe s ogranichennoj srednej moshhnost'ju. Radiotehnika i jelektronika. 1990. T. 35. № 8. S. 1646–1650 (In Russian).
  29. Chudnov A.M. Pomehoustojchivost' korreljacionnogo priema psevdosluchajnyh signalov, modulirovannyh po amplitude i faze. Radiotehnika i jelektronika. 1987. T. 32. № 1. S. 62–68 (In Russian).
  30. Chudnov A.M. Ob adaptivnyh algoritmah psevdosluchajnogo perekljuchenija rabochih chastot radiolinij v uslovijah sluchajnyh i prednamerennyh pomeh. Zhurnal radiojelektroniki IRJe. 2015. № 4. S. 1–14.
Date of receipt: 14.10.2022
Approved after review: 19.10.2022
Accepted for publication: 05.12.2022