350 rub
Journal Radioengineering №11 for 2022 г.
Article in number:
New capabilities of wideband cognitive communication systems operating over ionospheric HF radio channels with intramode dispersion
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202211-23
UDC: 621.39
Authors:

D.V. Ivanov1, V.A. Ivanov2, N.V. Ryabova3, V.V. Ovchinnikov4

1-4 Volga State University of Technology (Yoshkar-Ola, Russia)

Abstract:

Currently, wideband ionospheric HF radio communication is rapidly developing. It gains new advanced qualities due to the use of IT-technologies, state-of-the-art tools for sensor diagnostics of channels, which allow one to adapt systems to negative time varying effects in the channel. However, the expansion of the bandwidth of systems operating through the ionosphere is challenging and requires overcoming the negative effect of intramode dispersion and developing a methodology and a mathematical macromodel of a non-stationary multidimensional system. The research is addressed to the development of intelligent methods for overcoming dispersion distortions in HF communication systems that use a significant bandwidth expansion.

Paper presents a channel model of wideband ionospheric HF radio channels, which takes into account intramode dispersion of normal and anomalous types. It is shown that in the vicinity of the frequency where dispersion type changes, its parameter equals GDD = 0 and the dispersion distortions caused by the frequency dependence of the group delay significantly mitigate. This effect can be used for practical applications to expand the channel bandwidth without spending resources on overcoming dispersion distortions of wideband HF communication signals.

In the general case, overcoming dispersion involves the use of an equalization method that implements the principle of inverse filtration. For ionospheric wideband HF channels, paper presents generalized algorithms that implement the equalizer operation with the reinforcement machine learning to update the correcting channel model through a training period, which was selected based on experimental data.

To update the equalization model, we developed unique active radio channel sensor with inverse filtration and machine learning modes, which implements methods of intellectual analysis of experimental data for ionospheric radio channels, as well as naive prediction and reinforcement learning in real time. Studies showed that in the case of using wideband fast frequency hopping for communication, the intramode dispersion of the group delay causes additional random phase shift keying of the received symbols. Its demodulation can only be implemented with the use of the presented complex method for overcoming intramode dispersion. Thus, for communication systems with inverse filtration and fast frequency hopping, this effect can be assumed as a mechanism for increasing the structural secrecy.

Experimental studies proved the efficiency of the developed methods for overcoming the negative effect of intramode dispersion. Their use for dispersive HF channels with a bandwidth of 1 MHz cause a decrease in the duration of the impulse responses to the values typically observed in the absence of dispersion (~ 1 μs). Research findings showed that on the mid-latitude paths with a length of roughly 2.6 Mm, the use of a complex method for overcoming dispersion in HF radio channels with a bandwidth of up to 1 MHz, ensures energy secrecy close to 35 dB.

The research findings contribute to the achievement of new capabilities in improving noise immunity and secrecy for the state-of-the-art ionospheric wideband HF radio communication systems. The practical application of the findings of the research into dispersion distortions of wideband wave packets and the developed methods will allow operation of ionospheric communication systems over wideband HF radio channels at a guaranteed reliability, expanding their technical capabilities.

Pages: 162-177
For citation

Ivanov D.V., Ivanov V.A., Ryabova N.V., Ovchinnikov V.V. New capabilities of wideband cognitive communication systems opera-
ting over ionospheric HF radio channels with intramode dispersion. Radiotekhnika. 2022. V. 86. № 11. P. 162−177.
DOI: https://doi.org/10.18127/j00338486-202211-23 (In Russian)

References
  1. Ivanov D.V., Ivanov V.A., Rjabova N.V., Bel'gibaev R.R. Opredelenie zanjatosti KV-radiokanalov s polosami 3…24 kGc dlja povyshenija jeffektivnosti peredachi informacii. Vestnik Povolzhskogo gos. tehnologicheskogo un-ta. Ser. Radiotehnicheskie i infokommunikacionnye sistemy. 2020. № 3 (47). S. 6-17. DOI: https://doi.org/10.25686/2306-2819.2020.3.6 (In Russian).
  2. Furman W., Nieto J., Koski E. Interference Environment and Wideband Channel Availability. Proc. HF 13. The 10th Nordic Conference on HF Communications. At Fårö. 2013. Р. 4.2.1-4.2.10.
  3. Ivanov D.V., Ivanov V.A., Ryabova N.V., Ovchinnikov V.V. Actualization of Parameters of Adaptive SDR-equalizer of Wideband HF Radio Channels to Effectively Correct for Frequency Intramode Dispersion. 2021 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). 2021. Р. 1-4. DOI: https://doi.org/10.1109/SYNCHROINFO51390.2021.9488362.
  4. Ivanov D.V., Ivanov V.A., Rjabova N.V., Bel'gibaev R.R., Elsukov A.A., Ovchinnikov V.V. Novye zadachi ionosfernoj KV-svjazi. Razvitie metodik, apparaturnyh reshenij i jeksperimental'nye rezul'taty ih issledovanija. Trudy XXVII Vseros. otkrytoj nauch. konf. «Rasprostranenie radiovoln» (g. Kaliningrad, 28 ijunja – 03 ijulja 2021 g.). Kaliningrad: Baltijskij federal'nyj un-t imeni Immanuila Kanta. 2021. S. 68-85 (In Russian).
  5. Xiao Y., Maywar D.N., Agrawal G.P. New approach to pulse propagation in nonlinear dispersive optical media. Journal of the Optical Society of America B. 2012. V. 29. Р. 2958-2963. DOI: https://doi.org/10.1364/JOSAB.29.002958.
  6. Tyson R.K. Principles and Applications of Fourier Optics. IOP Publishing. Bristol, UK. 2014. 116 p.
  7. Rjabova M.I. FChH shirokopolosnyh ionosfernyh kanalov KV-svjazi v uslovijah chastotnoj dispersii sredy. Vestnik Povolzhskogo gos. tehnologicheskogo un-ta. Ser. Radiotehnicheskie i infokommunikacionnye sistemy. 2020. № 1(45). S. 6-17. DOI: https://doi.org/10.25686/2306-2819.2020.1.6 (In Russian).
  8. Ovchinnikov V.V., Ivanov D.V. Correction for dispersion distortions of frequency response of wideband HF radio channel with the use of the deconvolution method. 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science. 2020. Р. 1-4. DOI: https://doi.org/10.23919/URSIGASS49373.2020.9232379.
  9. Ivanov D.V., Ivanov V.A., Ryabova N.V., Ovchinnikov V.V. Studying the Effect of Chirping of the Impulse Response of an Ultra-wideband Ionospheric HF Channel under the Influence of Intramode Frequency Dispersion. 2022 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). 2022. Р. 1-5. DOI: https://doi.org/10.1109/SYN-CHROINFO55067.2022.9840991.
  10. Armand N.A. Propagation of broadband signals in dispersive media. Journal of Communications Technology and Electronics. 2003. V. 48. № 9. Р. 1045-1057.
  11. Djevis K. Radiovolny v ionosfere: Per. s angl. M.: Mir. 1973. 502 s. (In Russian).
  12. Dhar S., Perry B.D. Equalized Megahertz-Bandwidth HF Channels for Spread Spectrum Communications. Proc. MILCOM 1982. IEEE Military Communications Conference - Progress in Spread Spectrum Communications. Boston, MA, USA. 1982. Р. 29.5-1-29.5-5.
  13. Shi S., Yang G., Jiang C., Zhang Y., Zhao Z. Wuhan Ionospheric Oblique Backscattering Sounding System and Its Applications-A Review. Sensors. V. 17. № 6. Р. 1430. DOI: https://doi.org/10.3390/s17061430.
  14. Ivanov V.A., Ivanov D.V., Elsukov A.A., Ovchinnikov V.V., Ryabova N.V., Ryabova M.I. BPSK signal shaping and processing for digital SDR ionosonde. 2018 Systems of Signals Generating and Processing in the Field of on Board Communications. 2018.
    Р. 1-5. DOI: https://doi.org/10.1109/SOSG.2018.8350595.
  15. Ivanov D.V., Ivanov V.A., Elsukov A.A., Ryabova N.V., Laschevsky A.R. Application of HF OFDM Signal for Multi-Carrier Vertical Ionospheric Sounding. 2019 8th Asia-Pacific Conference on Antennas and Propagation (APCAP). 2019. Р. 9-13. DOI: https://doi.org/10.1109/APCAP47827.2019.9471937.
  16. Richard S.S., Andrew G.B. Reinforcement Learning: An Introduction. Second edition (in progress). A Bradford Book. Cambridge, Massachusetts London, England: The MIT Press. 2015. 352 p.
  17. Perry B. A new wideband HF technique for MHz-Bandwidth spread-spectrum radio communications. IEEE Communications Magazine. 1983. V. 21. № 6. Р. 28-36.
  18. Ivanov D.V., Ivanov V.A., Ryabova M.I., Ovchinnikov V.V. Adaptive SDR-Equalizer for Frequency Dispersion Correction in Single-Mode Wideband HF Radio Channels. 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). 2020. Р. 1-5. DOI: https://doi.org/10.1109/SYNCHROINFO49631.2020.9166085.
  19. Ivanov D.V., Ryabova N.V., Ryabova M.I., Ovchinnikov V.V. Experimental Study of Single-Mode Propagation Ranges of Short Waves on Mid-Latitude Radio Paths of Various Lengths. 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science. 2020. Р. 1-4. DOI: https://doi.org/10.23919/URSIGASS49373.2020.9232356.
  20. Ivanov D.V., Ivanov V.A., Ryabova N.V., Belgibaev R.R., Elsukov A.A., Ovchinnikov V. V. Universal Complex for Sounding and Estimation of Ionospheric Radio Channels Ranging from 3 kHz to 1 MHz Wide. 2021 International Symposium on Antennas and Propagation (ISAP). 2021. Р. 1-2. DOI: https://doi.org/10.23919/ISAP47258.2021.9614531.
  21. Lopardin P.A., Feoktistov D.S., Garifullin V.F., Bondarenko V.N., Zuyevskaya A.I. The impact of simple navigation signals multipath propagation on the effectiveness of eliminating the phase measurements ambiguity. Radiotekhnika. 2022. № 8(86). P. 29-36. DOI: 10.18127/j00338486-202208-03
Date of receipt: 23.09.2022
Approved after review: 11.10.2022
Accepted for publication: 02.11.2022