350 rub
Journal Radioengineering №10 for 2022 г.
Article in number:
Analytical Fano resonance models for frequency-selective microwave surfaces
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202210-18
UDC: 621.371
Authors:

V.B. Bayburin1, V.V. Komarov2, V.P. Meshanov3, M.I. Balakin4, V.A. Kirkitsa5

1,2,4,5 Yuri Gagarin State Technical University of Saratov (Saratov, Russia)

3 NPP “Nika-SVCh” LLC (Saratov, Russia)

Abstract:

Currently, one of the most promising and widely used filters for the microwave range is a cross-shaped symmetrical bandpass filter. Changing the shape of a cross-shaped symmetrical bandpass filter leads to the formation of a Fano resonance in its frequency response. The Fano resonance effect can be used in the design of ultra-sensitive sensors, ultra-compact antennas and lasers. But due to the small number of works devoted to the use of the Fano resonance in the microwave range, there is a need for an analytical study of the influence of filter parameters on the Fano resonance in a cross-shaped band pass filter. The purpose of our work is to study the influence of geometric parameters of the filter on its frequency response with Fano resonance. As a result, the frequency characteristics of a cross-shaped asymmetric bandpass filter were constructed at different values of the parameters of the analytical filter circuit. The capacitance of the capacitor, the inductance and resistance of the coils, the load resistance, as well as the number of circuits were used as parameters. In accordance with this, the influence of the circuit parameters on the shape of the Fano resonance was considered.

The investigations was funded by Russian Science Foundation (project № 22-19-00357, https://rscf.ru/project/22-19-00357/).

Pages: 155-164
For citation

Bayburin V.B., Komarov V.V., Meshanov V.P., Balakin M.I., Kirkitsa V.A. Analytical Fano resonance models for frequency-selective microwave surfaces. Radiotekhnika. 2022. V. 86. № 10. P. 155−164. DOI: https://doi.org/10.18127/j00338486-202210-18 (In Russian)

References
  1. Fano U. Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d’arco. Nuovo Cim. 1935. V. 12 № 3. P. 154–161.
  2. Fano U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 1961. V. 124. № 6. P. 1866–1878.
  3. Rybin M.V., Khanikaev A.B., Inoue M., Samusev K.B., Steel M.J., Yushin G., Limonov M.F. Fano resonance between Mie and Bragg scattering in photonic crystals. Phys. Rev. Lett. 2009. V. 103 № 2. 023901.
  4. Miroshnichenko E., Flach S., Kivshar Y.S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 2010. V. 82. № 3. P. 2257–2298.
  5. Luk’yanchuk B., Zheludev N.I., Maier S.A., Halas N.J., Nordlander P., Giessen H., Chong C.T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010. V. 9. № 9. P. 707–715.
  6. Rahmani M., Luk’yanchuck B., Hong M. Fano resonance in novel plasmonic nanostructures. Laser Phot. Rev. 2013. V. 7. № 3. P. 329–349.
  7. Zhang S., Genov D.A., Wang Y., Liu M., Zhang X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 2008. V. 101. № 4. 047401.
  8. Hao F., Nordlander P., Sonnefraud Y., Van Dorpe P., Maier S.A. Tunability of subradiant optical sensing. ACS Nano. 2009. V. 3. № 3. P. 643–652 (2009).
  9. Verellen N., Sonnefraud Y., Sobhani H., Hao F., Moshchalkov V.V., Van Dorpe P., Nordlander P., Maier S.A. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 2009. V. 9. № 4. P. 1663–1667.
  10. Liu N., Weiss T., Mesch M., Langguth L., Eigenthaler U., Hirscher M., Sönnichsen C., Giessen H. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 2010. V. 10. № 4. P. 1103–1107.
  11. Lassiter J.B., Sobhani H., Fan J.A., Kundu J., Capasso F., Nordlander P., Halas N.J. Fano resonances in plasmonic nanoclusters: geometrical and chemical tenability. Nano Lett. 2010. V. 10. № 8. P. 3184–3189.
  12. Fan J.A., Wu C., Bao K., Bao J., Bardhan R., Halas N.J., Manoharan V.N., Nordlander P., Shvets G., Capasso F. Self-assembled plasmonic nanoparticle clusters. Science 2010 V. 328. № 5982. P. 1135–1138.
  13. Hentschel M., Saliba M., Vogelgesang R., Giessen H., Alivisatos A.P., Liu N. Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 2010. V. 10. № 7. P. 2721–2726.
  14. Hentschel M., Dregely D., Vogelgesang R., Giessen H., Liu N. Plasmonic oligomers: The role of individual particles in collective behavior. ACS Nano. 2011. V. 5. № 3. P. 2042–2050.
  15. Fu Y.H., Zhang J.B., Yu Y.F., Luk’yanchuk B. Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano. 2012. V. 6. № 6. P. 5130–5137.
  16. Cetin E., Altug H. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano. 2012. V. 6. № 11. P. 9989–9995.
  17. Wu, Khanikaev A.B., Adato R., Arju N., Yanik A.A., Altug H., Shvets G. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 2011. V. 11. № 1. P. 69–75.
  18. Ye J., Wen F., Sobhani H., Lassiter J.B., Van Dorpe P., Nordlander P., Halas N.J. Plasmonic nanoclusters: Near-Field properties of the Fano resonance interrogated with Sers. Nano Lett. 2012. V. 12. № 3. P. 1660–1667.
  19. Gallinet B., Martin O.J.F. Ab-initio theory of Fano resonances in plasmonic nanostructures and metamaterials. Phys. Rev. B. 2011. V. 83. № 23. 235427.
  20. Gallinet B., Martin O.J.F. Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances. ACS Nano. 2011. V. 5. № 11. P. 8999–9008.
  21. Giannini V., Francescato Y., Amrania H., Phillips C.C., Maier S.A. Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach. Nano Lett. 2011. V. 11. № 7. P. 2835–2840.
  22. Fan S.H. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl. Phys. Lett. 2002. V. 80. P. 908–910.
  23. Genet C., van Exter M.P., Woerdman, J.P. Fano-type interpretation of red shifts and red tails in hole array transmission spectra. Opt. Commun. 2003. V. 255. P. 331–336.
  24. Hao F. et al. Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 2008. V. 8. P. 3983–3988.
  25. Rybin M.V. et al. Fano resonance between Mie and Bragg scattering in photonic crystals. Phys. Rev. Lett. 2009. V. 103. 023901.
  26. Attaran et al. Circuit Model of Fano Resonance on Tetramers, Pentamers, and and Broken Symmetry Pentamers. Plasmonics. 2014. V. 9. P. 1–11.
  27. Butet J., Russier-Antoine I., Jonin C., Lascoux N., Benichou E., Brevet P.-F. Sensing with multipolar second harmonic generation from spherical metallic nanoparticles. Nano Lett. 2012. V. 12. № 3. P. 1697–1701.
  28. Butet J., Martin O. J. F. Refractive index sensing with Fano resonant plasmonic nanostructures: A symmetry based nonlinear approach. Nanoscale, Accepted article. 2014. DOI: 10.1039/C4NR05623J.
  29. Kanjanasit K., Wang C. H. Fano resonance in a metamaterial consisting of two identical arrays of square metallic patch elements separated by a dielectric spacer. Appl. Phys. Lett. 2013. V. 102. № 25. Art. no. 251108.
  30. Liao Z., Pan B.C., Shen X., Cui T.J. Multiple Fano resonances in spoof localized surface plasmons. Opt. Express. 2014. V. 22. № 13. P. 15710–15717.
  31. Komarov V.V., Zwick T., Marahrens S., Molchanov S. Fano-Resonant Frequency-Selective Surface with Cross-Shaped Apertures. IEEE microwave and wireless components letters. 2019. V. 29. P. 775–778.
  32. Porterfield D.W., Hesler J.L., Densing R., Mueller E.R., Crowe T.W., Weikle II R.M. Resonant metal-mesh bandpass filters for the far infrared. Applied optics. 1994. V. 33. P. 6046–6052.
  33. Komarov V.V. Optimizacija S-parametrov chislennyh modelej dissipativnyh SVCh-jelementov slozhnoj konfiguracii. Jelektromagnitnye volny i jelektronnye sistemy. 2006. T. 11. № 2-3. S. 64-73.
  34. Meshhanov V.P., Alaverdjan S.A., Kabanov I.N., Komarov V.V. Razrabotka i modelirovanie dvumernyh periodicheskih struktur dlja uzkopolosnoj fil'tracii signalov. Radiotehnika. 2014. № 10. S. 9-13.
Date of receipt: 24.06.2022
Approved after review: 04.07.2022
Accepted for publication: 28.07.2022