A.S. Podstrigaev1, A.V. Smolyakov2, V.P. Likhachev3
1,2 Saint Petersburg Electrotechnical University «LETI» (Saint Petersburg, Russia)
3 Russian Air Force Military Educational and Scientific Center «Air Force Academy «Professor N.E. Zhukovsky and Major Y.A. Gagarin» (Voronezh, Russia)
All approaches to the construction of wideband analyzers are based on six main types of receivers: scanner, multichannel receiver, matrix receiver, receiver with a bank of frequency-dependent delay lines (instantaneous frequency measurement receiver), monobit receiver, and sub-Nyquist (undersampling) receiver. However, it is known that receivers of only two types ensure processing of the most significant number of overlapped pulses: a matrix receiver and a sub-Nyquist receiver. The former allows processing up to 2…3 overlapped pulses, while the latter – up to 3…5 ones.
In practice, still, the number of overlaps depends on the complexity of a signal environment. Besides, from the point of view of the wideband analyzer, random factors determine this environment. Therefore, to select the receiver type suitable for the developed analyzer, a quantitative indicator of the signal environment complexity is required. In this paper, the probability of overlap not less than M pulses is proposed as such an indicator. The expressions obtained for calculating this probability allowed to plot the probability of overlapping in time of M and more pulses against the number of radio emission sources N at different duty-off factors S of the pulse sequences emitted the sources. To ease the attribution of obtained probabilities to actual operating conditions of the wideband analyzer, the paper provides the numbers of radars of various purposes which could have formed a signal environment with given complexity. The paper also gives recommendations on selecting an optimal receiver for the developed wideband analyzer considering implementation complexity and the desired ratio of successfully processed overlapped pulses under predicted analyzer’s operational conditions characterized by types and numbers of radio emission sources. Thus, when the signal environment’s complexity is low, a receiver of almost any type is suitable, while in the environment of average complexity, the use of a matrix receiver is advised. Finally, when the environment complexity is high, a sub-Nyquist receiver is the best option.
To summarize, the presented results make it possible to select a receiver for wideband analysis depending on the potential complexity of the signal environment.
Podstrigaev A.S., Smolyakov A.V., Likhachev V.P. Selecting a radio receiver for wideband analysis of the signal environment based on an assessment of its complexity. Radiotekhnika. 2022. V. 86. № 1. P. 143−153. DOI: https://doi.org/10.18127/j00338486-202201-19 (In Russian)
- Rembovskij A.M., Ashihmin A.V., Koz'min V.A. Radiomonitoring - zadachi, metody, sredstva: 2 izd. M.: Gorjachaja linija – Telekom, 2010. 624 s. (in Russian).
- Kirsanov Je.A., Sirota A.A. Obrabotka informacii v prostranstvenno-raspredelennyh sistemah radiomonitoringa: statisticheskij i nejrosetevoj podhody. M.: Izd. firma «Fiz.-mat. literatura», 2012. 344 s. (in Russian).
- Podstrigaev A.S., Lihachev V.P. Sovremennye podhody k realizacii shirokopolosnyh bespoiskovyh po chastote sredstv radiomonitoringa dlja rossijskogo flota. Morskaja radiojelektronika. 2020. № 3(73). S. 42–45 (in Russian).
- Lihachev V.P., Semenov V.V., Veselkov A.A., Demchuk A.A. Obobshhennyj algoritm radiotehnicheskogo monitoringa RLS s sintezirovannoj aperturoj antenny. Materialy XVI Mezhdunarodnoj nauchno -metodicheskoj konferencii «Informatika: problemy, metodologija, tehnologii» (Voronezh, 11–12 fevralja 2016). Voronezh: Izd-vo Nauchno-issledovatel'skie publikacii, 2016. S. 179–184 (in Russian).
- Miroshnikova N.E. Obzor sistem kognitivnogo radio. T-Comm: Telekommunikacii i transport. 2013. № 9. S. 108–111 (in Russian).
- Glushkov A.N., Hohlov N.S. Nekogerentnaja kvadraturnaja obrabotka radiosignalov na osnove bystryh cifrovyh algoritmov dlja monitoringa radiochastotnogo spektra v tehnologijah kognitivnogo radio. Vestnik VI MVD Rossii. 2013. № 3. S. 19–26 (in Russian).
- Speranskij V.S. i dr. Perspektivy razvitija sverhshirokopolosnyh sistem svjazi v napravlenii kognitivnogo radio. Sistemy sinhronizacii, formirovanija i obrabotki signalov. 2015. T. 6. №. 1. S. 9–11 (in Russian).
- Limarev A.E. Optimizacija vremeni monitoringa v kognitivnom radio: odna para – privilegirovannyj i kognitivnyj pol'zovateli. Radiotehnika. 2013. № 12. S. 052-060 (in Russian).
- Tsui J.B.Y. Microwave receivers with electronic warfare applications. IET. 2005. V. 2.
- Kuprijanov A.I., Saharov A.V. Radiojelektronnye sistemy v informacionnom konflikte. M.: Vuzovskaja kniga, 2003. 528 s. (in Russian).
- Len'shin A.V. Bortovye sistemy i kompleksy radiojelektronnogo podavlenija. Voronezh: Nauch. kniga, 2014. 590 s. (in Russian).
- Podstrigaev A.S., Lihachev V.P., Ljapin M.V., Lipakov N.E. Analiz verojatnostnyh harakteristik matrichnogo priemnika s uchetom neodnoznachnosti opredelenija chastoty na stykah kanalov. Doklady Tomskogo gosudarstvennogo universiteta sistem upravlenija i radiojelektroniki, 2015. № 4 (38). S. 17–25 (in Russian).
- Lihachev V.P., Veselkov A.A., Nguen Ch.N. Harakteristiki obnaruzhenija linejno-chastotno-modulirovannyh, fazo-kodo-manipulirovannyh i prostyh radioimpul'sov v avtokorreljacionnom priemnike. Radiotehnika. 2018. № 8. S. 71–76 (in Russian).
- Lihachev V.P., Semenov V.V., Veselkov A.A. Jeksperimental'naja aprobacija algoritma opredelenija chastotno-vremennyh parametrov LChM-signalov. Telekommunikacii. 2016. № 5. S. 2–7 (in Russian).
- Korotkov V.F., Zyrjanov R.S. Razdelenie impul'snyh posledovatel'nostej v smeshannom potoke signalov. Izvestija vysshih uchebnyh zavedenij Rossii. Radiojelektronika. SPb.: SPbGJeTU «LJeTI», 2017. № 3. S. 5–10. URL: https://re.eltech.ru/jour/article/view/169 (in Russian).
- Bogdanov S.A., Kuprijanov P.V., Nikolaev S.V., Petrov S.A. Issledovanie putej rasshirenija dinamicheskogo diapazona shirokopolosnyh priemnyh ustrojstv SVCh v mnogosignal'nom rezhime. Izvestija vysshih uchebnyh zavedenij Rossii. Radiojelektronika. SPb.: SPbGJeTU «LJeTI», 2018. № 3. S. 85–90. URL: https://doi.org/10.32603/1993-8985-2018-21-3-85-90 (in Russian).
- Podstrigaev A.S. Analiz vedenija radiotehnicheskoj razvedki v uslovijah slozhnoj signal'noj obstanovki. Sovremennye problemy proektirovanija, proizvodstva i jekspluatacii radiotehnicheskih sistem, 2016. № 1 (10). S. 49–52 (in Russian).
- Dvornikov S.V., Konjuhovskij V.S., Simonov A.N. Sposob chastotnoprostranstvennoj selekcii radioizluchenij s pomoshh'ju triortogonal'noj antennoj sistemy. Informacionno-upravljajushhie sistemy, 2020. № 1, s. 63–72. DOI: 10.31799/1684-8853-2020-1-63-7. (in Russian).
- Podstrigaev A.S., Lihachev V.P. Neodnoznachnost' opredelenija chastoty v matrichnom priemnike. Zhurnal radiojelektroniki: jelektronnyj zhurnal, 2015. № 2. 19 s. URL: http://jre.cplire.ru/jre/feb15/13/text.pdf (in Russian).
- Huang S., etc. Frequency estimation of multiple sinusoids with three sub-Nyquist channels. Signal Processing, 2017. V. 139. Р. 96–101.
- Patent US № 5293114. Frequency measurement receiver with means to resolve an ambiguity in multiple frequency estimation. McCormick W.S., Tsui J.B.Y. Publ. 08.03.1994.
- Podstrigaev A.S. Povyshenie jeffektivnosti matrichnogo priemnika v slozhnoj signal'noj obstanovke na osnove optovolokonnoj linii zaderzhki. Trudy MAI. 2021. № 116. 24 s. doi: 10.34759/trd-2021-116-08. URL: http://trudymai.ru/published.php?ID=121070 (in Russian).
- Jiao B. Leveraging UltraScale Architecture Transceivers for High-Speed Serial I/O Connectivity, 2015. 24 p. URL: https://www.xilinx.com/support/documentation/white_papers/wp458-ultrascale-xcvrs-serialio.pdf.
- Skolnik M. I. Radar handbook. New York: McGraw-Hill. 2008. 1328 p.
- Self A.G., Smith B.G. Intercept time and its prediction. IEE Proceedings F - Communications, Radar and Signal Processing, 1985. V. 132. no. 4, pp. 215–220. doi: 10.1049/ip-f-1.1985.0052.
- Kelly S.W., Noone G.P., Perkins J.E. Synchronization effects on probability of pulse train interception. IEEE Transactions on Aerospace and Electronic Systems. 1996. V. 32. No. 1. P. 213–220. doi: 10.1109/7.481263.
- Apfeld S., Charlish A., Koch W. An Adaptive Receiver Search Strategy for Electronic Support. 2016 Sensor Signal Processing for Defence. Edinburgh. 2016. P. 1–5. doi: 10.1109/SSPD.2016.7590587.
- Clarkson I.V.L. Optimisation of Periodic Search Strategies for Electronic Support. IEEE Transactions on Aerospace and Electronic Systems. 2011. V. 47. No. 3. P. 1770–1784. doi: 10.1109/TAES.2011.5937264.
- Mel'nikov Ju.P., Popov S.V. Metody ocenki jeffektivnosti shirokodiapazonnogo mnogokanal'no-funkcional'nogo («matrichnogo») priemnika s mnogostupenchatym preobrazovaniem chastoty. Jelektromagnitnye volny i jelektronnye sistemy. 2009. T. 14. № 3. S. 52–61 (in Russian).
- Patent na izobretenie RU № 2516763. Sposob rasshirenija polosy chastot ocenki spektrov signalov. Krenev A.N., Botov V.A., Gorjuncov I.S., Pogrebnoj D.S., Toporkov V.K. Opubl. 20.05.2014. Bjul. № 14 (in Russian).