350 rub
Journal Radioengineering №8 for 2021 г.
Article in number:
A new approach to the development of perspective compact frequency multipliers of the subterahertz and terahertz bands for on-board electronic equipment
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202108-12
UDC: 537.86.029
Authors:

V.B. Baiburin, A.S. Rozov, N.Yu. Khorovodova, A.S. Ershov, A.A. Nikiforov

Yuri Gagarin State Technical University of Saratov (Saratov, Russia)

Abstract:

Currently, the increasing interest of researchers is attracted by the theoretical and practical problems of mastering the sub-terahertz and terahertz frequency range. Electronic devices operating in these ranges find effective applications in various fields of science and technology: aerospace equipment, security systems, spectroscopy, medicine, biology and many others. The purpose of this work is to focus on a frequency multiplication device that allows using basic sources of relatively low frequency generation to enter the terahertz frequency range. The results of recent years obtained both on the basis of solid-state effects and with the help of vacuum electronics, in particular, magnetron-type devices, which are characterized by compactness, high resistance to radiation loads, mechanical influences, which is important for on-board equipment, are considered. It is known that at high frequencies, vacuum devices require super-precision manufacturing of decelerating systems. This is essentially the main difficulty. The article proposes a new approach based on the hypothesis of P.L. Kapitsa, which allows to significantly simplify the anode structure of a magnetron multiplier with an acceptable level of output parameters. The achievements of recent years in the field of creating sub-terahertz and terahertz frequency multipliers, mainly for on-board equipment of mobile platforms, taking into account the requirements of aerospace systems, first of all, are noted.

Pages: 111-121
For citation

Baiburin V.B., Rozov A.S., Khorovodova N.Yu., Ershov A.S., Nikiforov A.A. A new approach to the development of perspective compact frequency multipliers of the subterahertz and terahertz bands for on-board electronic equipment. Radiotekhnika. 2021. V. 85.  № 8. P. 111−110. DOI: https://doi.org/10.18127/j00338486-202107-12 (In Russian)

References
  1. Grigoriev A.D. Terahertz Electronics. Cambridge Scholars Publishing. 2020. 333 p.
  2. Generacija i usilenie signalov teragercovogo diapazona: koll. monografija. Pod red. A.E. Hramova, A.G. Balanova, V.D. Eremki, V.E. Zapevalova, A.A. Koronovskogo. Saratov: Sarat. gos. tehn. un-t. 2016. 458 s. (In Russian).
  3. Booske J.H., Dobbs R J., Joye C.D., et al. Vacuum electronic high power terahertz sources. IEEE Trans. Terahertz Sci. Technol. 2011. V. 1. № 1. P. 54–75. DOI: 10.1109/TTHZ.2011.2151610.
  4. Jelektronika. Jenciklopedicheskij slovar'. M.: Sovetskaja jenciklopedija. 1991. 695 s. (In Russian).
  5. Bozhkov V.G. Semiconductor detectors, mixers, and frequency multipliers for the terahertz Band. Radiophysics and Quantum Electronics. 2003. V. 46. № 8-9. P. 631-656. DOI: 10.1023/B:RAQE.0000024993.40125.2b.
  6. Vaks V.L., Balakirev V.Ju., Panin A.N., Pripolzin S.I., Koshelec V.P., Kiselev O.S Razrabotka fizicheskih principov postroenija i realizacii spektrometra diapazona 500-700 GHz so sverhprovodnikovym integral'nym priemnikom. Fizika tverdogo tela. 2010. T. 52. № 11. S. 2100-2103 (In Russian).
  7. Stake J., Malko A., Bryllert T., Vukusic J. Status and Prospects of High-Power Heterostructure Barrier Varactor Frequency Multipliers. Proceedings of the IEEE. 2017. V. 105. № 6. P. 1006-1020. DOI: 10.1109/JPROC.2016.2646761.
  8. Yeryomka V.D. Frequency Multipliers with Inclined Electron Flow. 17th International Crimean Conference - Microwave & Telecommunication Technology. 2007. P.151-162. DOI: 10.1109/CRMICO.2007.4368666.
  9. Tang C.H. An exact analysis of varactor frequency multipliers. IEEE Trans. MTT. 1966. V. 14. №. 4. P. 210-212. DOI: 10.1109/TMTT.1966.1126222.
  10. Siegel P.H. Terahertz technology IEEE Trans. on MTT. 2002. V. 50. № 3. P. 910-928. DOI: 10.1109/22.989974. 
  11. Moussessian А.A., Wanke M. C., Yongjun Li., et al. A terahertz grid frequency doubler. IEEE MTT-S International Microwave Symposium. 1997. V. 2. P. 683-686. DOI: 10.1109/ MWSYM.1997.602883.
  12. Pavel'ev D.G., Koshurinov Ju.I., Ivanov A.S., Panin A.N., Vaks V.L., Gavrilenko V.I., Antonov A.V., Ustinov V.M., Zhukov A.E. Jeksperimental'noe issledovanie umnozhitelej chastoty na poluprovodnikovyh sverhreshetkah v teragercovom diapazone chastot. Fizika i tehnika poluprovodnikov. 2012. T. 46. № 1. S. 125-129 (In Russian).
  13. Pavel'ev D.G., Demarina N.V., Koshurinov Ju.I., Vasil'ev A.P., Semenova E.S., Zhukov A.E., Ustinov V.M. Harakteristiki planarnyh diodov teragercovogo diapazona chastot na osnove sil'no legirovannyh GaAs/AlAs-sverhreshetok. Fizika i tehnika poluprovodnikov. 2004. T. 38.  № 9. S. 1141-1146 (In Russian). 
  14. Djukov D.I., Fefelov A.G., Korotkov A.V., Pavel'ev D.G., Kozlov V.A., Obolenskaja E.S., Ivanov A.S., Obolenskij S.V. Sravnenie jeffektivnosti perspektivnyh geterostrukturnyh umnozhitel'nyh diodov teragercovogo diapazona chastot. Fizika i tehnika polu-provodnikov. 2020. T. 54. № 10. S. 1158-1162. DOI: 10.21883/FTP.2020 (In Russian). 
  15. Kinev N.V., Koshelets V.P. Study and Comparison of Laboratory Terahertz Sources Based on a Backward Wave Oscillator, a Semiconductor Microwave Frequency Multiplier with Large Numbers of Harmonics, and a Long Josephson Junction. J. Commun. Technol. Electron. 2021. 66. P. 278-288. DOI: https://doi.org/10.1134/S1064226921030116.
  16. Paveliev D.G., Koshurinov Y.I., Ivanov A.S., et al. Experimental study of frequency multipliers based on a GaAs/AlAs semi-conductor superlattices in the terahertz frequency range. Semiconductors. 2012. V. 46. P. 121-125. DOI: https://doi.org/10.1134/s1063782612010150.
  17. Stake J., Bryllert T., Vukusic J., Olsen A. Development of high power HBV multipliers for millimeter wave applications. Proceedings V. 6739. Electro-Optical Remote Sensing, Detection, and Photonic Technologies and Their Applications. 2007. 67390U. DOI: https:// doi.org/10.1117/12.737592.
  18. Kollberg E., Rydberg A. Quantum Barrier-Varactor Diodes for High Efficiency Millimeter-Wave Multipliers. Electronics Letters. 1990. V. 25. P. 1696-1697. DOI: 10.1049/el:19891134.
  19. Xiao Q.J. Hesler L., Crowe T.W., et al. High efficiency heterostructure-barrier-varactor frequency triplets using AlN substrates. IEEE MTT-S Int. Microw. Symp. Dig. 2005. P. 443-446.
  20. Schevchenko Y., Apostolakis A., Pereira M.F. Recent Advances in Superlattice Frequency Multipliers. In: Pereira M.F., Apostolakis A. (eds) Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. 2021. DOI: https://doi.org/10.1007/978-94-024-2082-1_8.
  21. Malko F.A., Bryllert T., Vukusic J., Stake J. A 474 GHz HBV frequency quintupler integrated on a 20 μm thick silicon substrate. IEEE Trans. THz Sci. Technol. 2014. V. 5 № 1. P. 85-91. DOI: 10.1109/TTHZ.2014.2378793.
  22. Klappenberger F., Renk K.F., Renk P., Rieder B. Semiconductor - superlattice frequency multiplier for generation of submillimeter waves. Appl. Phys. Lett. 84. 3924. 2004. DOI: https:// doi.org/10.1063/1.1741037.
  23. Endres C.P. Application of superlattice multipliers for high-resolution terahertz spectroscopy. Review of Scientific Instruments. 2007. V. 78. Is. 4. 043106. DOI: https:// doi.org/10.1063/1.2722401
  24. Grigor'ev A.D. Teragercevaja jelektronika. Materialy Mezhdunar. nauch.-tehnich. konf. «Aktual'nye problemy jelektronnogo priborostroenija (APJeP-2018)». T.1. Saratov: SGTU im. Gagarina Ju.A. 2018. S. 5-11 (In Russian).
  25. Kirichenko A.Ya., Yakovenko V.M., Klinotron – 50. In: V.M. Yakovenko. ed. 2007. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 12 (Spec. Iss.). P. 5-13.
  26. Yeryomka V.D., Kuraev A.A., Sinitsyn A.K. Orbotrons: multibeam MM- and sub-MM-wave oscillators. 14th International Crimean Conference «Microwave and Telecommunication Technology» (IEEE Cat. No.04EX843). 2004. P. 199-202. DOI: 10.1109/CRMICO.2004.183163.
  27. Gurevich A.V. A millimeter-wave two-stage orbotron. Proc. Seventh IEEE Int. Vacuum Electron. Conf. and Sixth IEEE Int. Vacuum Electron. Sources Conf. (IVEC-IVESC’2006). 2006. P. 199-200. DOI: 10.1109/IVELEC.2006.1666253.
  28. Matsui T. A Brief Review on Metamaterial-Based Vacuum Electronics for Terahertz and Microwave. Science and Technology.  J. Infrared. Milli. Terahz. Waves. 2017. V. 38. P. 1140–1161. DOI: https://doi.org/10.1007/s10762-017-0387-9.
  29. Veselago V.G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi. 1968. V. 10. № 4.10 (509). DOI: 10.1070/pu1968 v010n04abeh003699.
  30. Velazco J. Miniature Sub-Millimeter Wave Magnetron Oscillator. Status Report Final SBIR Phase II Small Business Innovation Research Program. Project Number R-51449ELSB2061791. Army Contract No. W911NF-06-C-008 SPONSORED BY U.S. Army Research Office. 2009. 20 p.
  31. Zaharov A.A., Buldakov E.I., Eremin V.P. Issledovanie i razrabotka moshhnyh impul'snyh dvuhmillimetrovyh magnetronov povyshennoj nadezhnosti. Vestnik Saratovskogo gosudarstvennogo tehnicheskogo universiteta. 2011. T. 4. № 2(60). S. 80-86 (In Russian).
  32. Naumenko V.D., Vavriv D.M., Schünemann K. Spatial-harmonic magnetrons with cold secondary-emission cathode: Advances and challenges. 9 th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW). 2016. P. 1-4. DOI: 10.1109/MSMW.2016.7538218.
  33. Baiburin V.B., Rozov A.S. Generation in crossed fields under parametric variation in the magnetic field. Journal of Communications Technology and Electronics. 2016. Т. 61. № 3. P. 267-271. DOI: 10.1134/S1064226916030025.
  34. Esfahani N.N., Tayarani M., Schuenemann K. Design and 3-D particle-in-cell simulation of a 140 GHz spatial harmonic magnetron. Progress in Electromagnetics Research. 2013. 133 p. DOI: 10.2528/PIER12081310.
  35. Baiburin V. B., Rozov A. S. Research about the conditions of parametric generation in planar resonators. International Conference on Actual Problems of Electron Devices Engineering (APEDE-2014). 2014. P. 142-145. DOI: 10.1109/APEDE.2014.6958735.
  36. Bajburin V.B., Kuc'ko P.P., Meshhanov V.P., Rozov A.S., Terent'ev A.A. Uchet vihrevyh jelektricheskih polej pri parametricheskoj generacii v skreshhennyh poljah. Jelektromagnitnye volny i jelektronnye sistemy. 2015. T. 20. № 2. S. 77-80 (In Russian).
  37. Baiburin V.B., Rozov A.S., Khorovodova N.Yu. Power Losses in Skin Layer at Parametric Generation in Crossed Fields. International Conference on Actual Problems of Electron Devices Engineering (APEDE-2018). 2018. P. 86-89. DOI: 10.1109/APEDE.2018.8542369.
  38. Baiburin V.B., Rozov A.S., Bespalova N.V. Influence of Inhomogeneous Magnetic Induction on Parametric Generation in Crossed Fields. International Conference on Actual Problems of Electron Devices Engineering (APEDE-2018). 2018. P. 90-93. DOI: 10.1109/APEDE.2018.8542188.
  39. Bajburin V.B., Rozov A.S., Horovodova N.Ju., Chernyshev S.L. Sovmestnoe vlijanie razlichnyh faktorov na parametricheskuju generaciju v skreshhennyh poljah. Radiotehnika. 2019. T. 83. № 7 (10). S. 52-56. DOI: 10.18127/j00338486-201907(10)-09 (In Russian).
  40. Bajburin V.B., Rozov A.S., Horovodova N.Ju., Chernyshev S.L. Umnozhitel' chastoty magnetronnogo tipa na osnove parametricheskoj generacii v skreshhennyh poljah. Radiotehnika. 2021. T. 85. № 4. S. 59-65. DOI: 10.18127/j00338486-202104-07 (In Russian).
  41. Izjumov D.B., Kondratjuk E.L. Zarubezhnyj opyt ispol'zovanija teragercovogo chastotnogo diapazona pri sozdanii obrazcov vooruzhenija, voennoj i special'noj tehniki. Innovatika i jekspertiza: nauchnye trudy. 2018. № 1(22). S. 153-168 (In Russian).
Date of receipt: 29.05.2021
Approved after review: 15.06.2021
Accepted for publication: 23.07.2021