350 rub
Journal Radioengineering №8 for 2021 г.
Article in number:
Comparative analysis of Luneberg spherical lens designs
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202108-10
UDC: 621.396
Authors:

M.P. Belyaev1, Yu.G. Pasternak2, V.A. Pendyurin3, E.A. Rogozin4, R.E. Rogozin5

1−4 Air Force Academy named alter professor N.E. Zhukovsky and Yu.A. Gagarin (Voronezh, Russia)

2,5 Voronezh State Technical University (Voronezh, Russia)

2,3 JSC «Automated Communication Systems» (Voronezh, Russia)

Abstract:

Formulation of the problem. The development of modern mobile satellite communication systems dictates the need for the development of multipath antennas having: high values of the directional coefficient, low level of side lobes, a large number of scanning beams in a wide viewing sector without distortion in the azimuthal and angular planes. Multipath antenna systems based on spherical Luneberg lenses have these advantages. Despite their advantages, the spherical lenses of Luneberg did not find wide practical use due to the complexity of the design, the high cost of production, and the large mass (in some cases). Thanks to the progress in the field of artificial media, the emergence of new production methods, various designs of spherical Luneberg lenses have been developed. The use of artificial dielectrics allows you to create inexpensive, lightweight spherical Luneberg lenses.

One widely used method of creating an artificial environment is to use partial air filling dielectrics. Luneberg lenses based on such media can have various designs: based on a dielectric ball with radial holes of variable diameter, from electrically small dielectric cubes of variable size, from a set of perforated dielectric disks, etc. For the manufacture of such lenses, various manufacturing technologies can be used, for example, three-dimensional printing, CNC machine.

Purpose. Comparative analysis of the characteristics of two structures of the spherical Luneberg lens with the aim of working at frequencies above 9 GHz: from a set of perforated dielectric disks, from dielectric cubes of different sizes.

Results. The results of comparative analysis of two designs of the spherical Luneberg lens are presented. The procedure of synthesis of each structure is considered. Design dependencies of effective dielectric constant used in development of investigated spherical lenses of Luneberg are given. Possible methods of technical implementation for each lens are considered, as well as important features that should be taken into account when designing and technical implementation. The weight of each structure was estimated. Conclusions about mechanical strength were made. Based on numerical modeling using the Weyland method, a comparison of directional properties in a wide frequency band was made. Conclusions have been drawn about the similarity and difference in directional characteristics.

Practical importance. The scientific and technical results obtained in the article will be useful in choosing the design of the Luneberg lens from artificial dielectrics, depending on the specified technical requirements, and production conditions.

Pages: 91-100
For citation

Belyaev M.P., Pasternak Yu.G., Pendyurin V.A., Rogozin E.A., Rogozin R.E. Comparative analysis of Luneberg spherical lens designs. Radiotekhnika. 2021. V. 85. № 8. P. 91−100. DOI: https://doi.org/10.18127/j00338486-202108-10 (In Russian)

References
  1. Shishlov A.V., Levitan B.A., Topchiev S.A., Anpilogov V.R., Denisenko V.V. Mnogoluchevye antenny dlja sistem radiolokacii i svjazi. Zhurnal radiojelektroniki. 2018. № 7. S. 1-30 (In Russian).
  2. Peeler G.D.M., Coleman H. Microwave stepped-index Luneberg lenses. IRE Transactions on Antennas and Propagation. 1958.  V. 6. № 2. P. 202-207.
  3. Bor J., Lafond O., Merlet H., Le Bars P., Himdi M. Foam Based Luneburg Lens Antenna at 60 GHz. Progress In Electromagnetics Research Letters. 2014. V. 44. P. 1-7.
  4. Patent 2263124 (RF), MPK C08J9/04, C08L101/12, C08K13/04, H01B3/00, H01Q15/02. Dijelektricheskaja polimernaja pena i linza dlja radiovoln s ee ispol'zovaniem. AKI Minoru (JP) i dr.; zajavitel' i patentoobladatel' Ocuka Kemikal KO., LTD. (JP), Sumitomo Jelektrik Indastriz, (JP) № 2003105465/04; zajavl. 25.07.2001; opubl. 27.10.2005, Bjul. № 30 (In Russian).
  5. Foster R., Nagarkoti D., Gao J., Vial B., Nicholls F., Spooner C., Haq S., Hao Y. Beam-Steering Performance of Flat Luneburg Lens at 60 GHz for Future Wireless Communications. International Journal of Antennas and Propagation. 2017. V. 6. P. 1-8.
  6. Peeler G.D.M., Archer D.F. A two-dimensional microwave Luneberg lens. Transactions of the IRE Professional Group on Antennas and Propagation. 1953. V. 1. № 1. P. 12-23.
  7. Kuzikov A.A., Orehov R.S., Salomatov Ju.P., Sugak M.I. Issledovanie pechatnoj cilindricheskoj linzy Ljuneberga. Jelektronika i mikrojelektronika SVCh. 2018. № 1. S. 426-430 (In Russian).
  8. Patent 2657926 (RF), MPK H01Q 15/02. Antennoe ustrojstvo na osnove linzy Ljuneberga. Aliev D.S. i dr.; zajavitel' i patentoobladatel' Aliev Dmitrij Sergeevich №2017126878; zajavl. 25.07.2017; opubl. 18.06.2018, Bjul. № 17 (In Russian).
  9. Patent 2485646 (RF), MPK H01Q 15/02. Ustrojstvo dlja fokusirovki tipa «linza Ljuneberga». Rjazancev R.O., Salomatov Ju.P.; zajavitel' i patentoobladatel' Federal'noe gosudarstvennoe avtonomnoe obrazovatel'noe uchrezhdenie vysshego professional'nogo obrazovanija  «Sibirskij federal'nyj universitet» №2012109411/08; zajavl. 12.03.2012; opubl. 20.06.2013, Bjul. № 17 (In Russian).
  10. Avdjushin A.S., Volkov K.O., Razinkin K.A., Fjodorov S.M. Issledovanie ploskoj linzy Ljuneberga s radial'nymi dijelektricheskimi lepestkami. Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. 2014. № 5-1(10). S. 23-25 (In Russian).
  11. Sayanskiy A., Glybovski S., Akimov V.P., Filonov D., Belov P., Meshkovskiy I. Broadband 3-D Luneburg Lenses Based on Metamaterials of Radially Diverging Dielectric Rods. IEEE Antennas and Wireless Propagation Letters. 2017. V. 16. P. 1520-1523.
  12. Cheng G., Wu Y., Yin J.X., Zhao N., Qiang T., Lv X. Planar Luneburg Lens Based on the High Impedance Surface for Effective Ku-Band Wave Focusing. IEEE Access. 2018. V. 6. P. 16942-16947.
  13. Chen H., Cheng Q., Huang A., Dai J., Lu H. Modified Luneburg Lens Based on Metamaterials. International Journal of Antennas and Propagation. 2015. V. 2015. 6 p.
  14. Su Y., Chen Z.N. A Flat Dual-Polarized Transformation-Optics Beam scanning Luneburg Lens Antenna Using PCB-Stacked Gradient Index Metamaterials. IEEE Transactions on Antennas and Propagation. 2018. V. 66. № 10. P. 5088-5097.
  15. Liang M., Ng W.R., Chang K., Gbele K., Gehm M.E., Xin H. A 3-D Luneburg Lens Antenna Fabricated by Polymer Jetting Rapid Prototyping. IEEE Transactions on Antennas and Propagation. 2014. V. 62. № 4. P. 1799-1807.
  16. Changsheng D., Ziqing C., Yong L., Haidong W., Chao J., Shiwen Y. Permittivity of composites used for Luneburg lens antennas by drilling holes based on 3-D printing technique . Journal of Terahertz Science and Electronic Information Technology. 2017. V. 15. № 4.  P. 646-651.
  17. Sato K., Ujiie H. A Plate Luneberg Lens with the Permittivity Distribution Controlled by Hole Density. Electronics and Communications in Japan. Part 1. 2002. V. 85. № 9. P. 163-166.
  18. Ma H.F., Cui T.J. Three-dimensional broadband and broad-angle transformation-optics lens. Nature Communications. 2010. V. 1. № 8. Article 124.
  19. Smith D.R., Vier D.C., Koschny Th., Soukoulis C.M. Electromagnetic parameter retrieval from inhomogeneous Metamaterials. Physical  Review. E-Statistical, Nonlinear, and Soft Matter Physics. 2005. V. 71. № 3.
  20. Zelkin E.G., Petrova R.A. Linzovye antenny M.: Sovetskoe radio. 1974. 280 s. (In Russian).
  21. Weiland T. A discretization method for the solution of Maxwell`s equations for six-component fields. Electronics and Communication. 1977. V. 31. P. 116-120.
  22. Markov G.T., Sazonov D.M. Antenny. M.: Jenergija. 1975. 528 s. (In Russian).
Date of receipt: 12.05.2021
Approved after review: 27.05.2021
Accepted for publication: 23.07.2021