350 rub
Journal Radioengineering №8 for 2021 г.
Article in number:
Underground meter wave antenna based on a patch structure with a metamaterial substrate
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202108-09
UDC: 621.396.67
Authors:

A.V. Ivanov1, V.I. Nikolaev2, Yu.G. Pasternak3, V.A. Pendyurin4

1,3 Air Force Academy named alter professor N.E. Zhukovsky and Yu.A. Gagarin (Voronezh, Russia)

2,3 JSC «Concern «Sozvezdie» (Voronezh, Russia)

3 Voronezh State Technical University (Voronezh, Russia)

3,4 JSC «Automated Communication Systems» (Voronezh, Russia)

Abstract:

The antenna devices of the stationary radio communication centers of the old park no longer fully meet modern requirements. This applies to the extensive structure of receiving radio centers with expensive and bulky antenna fields. Maintaining such facilities in working condition, reconstruction and modernization is a very expensive and time-consuming task.

Thus, the search for new technical solutions in the development of technologically technologically small antennas (EMA), characterized by reduced overall dimensions and cost, the use of which will increase the reliability of the radio reception centers of decameter (DCMW), meter (MW) waves, due to the hidden underground placement of antennas, is an urgent scientific and technical task. A compact, technological design of the patch antenna type (PA) with a metamaterial substrate (MMS) is proposed as a buried antenna of the MV range. By choosing this type and parameters of the antenna device, the main goal was achieved: to provide a minimal size of the antenna device, the possibility of performing the assembly of the finished product in a full technological cycle in indoor conditions (factory conditions), at the same time, there was an understanding that this design is an electrically small antenna (ESA) for the MV range. Therefore, this antenna has a high Q-factor therefore, it will be narrow-band. 

The problem is solved by introducing an MMS patch antenna into the structure, implemented on 4 resonators, each of which is a "fungus" with a flat square-shaped cap, the center of which is shorted to the underlying surface of the antenna by a copper wire. The use of an MMS located between the strip and the underlying surface made it possible to reduce the size of the side of the strip to m, which makes it possible to reduce the overall dimensions of the antenna device, reduce the cost of its design and increase the strength of the structure. The effective refractive index of the metamaterial structure was about 3, which corresponds to the use of a substrate with a permittivity of 9. 

The numerical experiment of the patch antenna model with MMS confirmed the possibility of ensuring good alignment with a load of 50 ohms, allowed us to expect a gain of about 6 dB from the current antenna sample and a radiation pattern width of at least 90 degrees.

The results of a full-scale experiment in the laboratory and field tests on the current model of the patch antenna made it possible to verify the adequacy of the developed model of the antenna device and its operability.

Pages: 80-90
For citation

Ivanov A.V., Nikolaev V.I., Pasternak Yu.G., Pendyurin V.A. Underground meter wave antenna based on a patch structure with a metamaterial substrate. Radiotekhnika. 2021. V. 85. № 8. P. 80−90. DOI: https://doi.org/10.18127/j00338486-202108-09 (In Russian)

References
  1. Lavrov G.L., Knjazev A.S. Prizemnye i podzemnye antenny. Teorija i praktika antenn, razmeshhennyh vblizi poverhnosti zemli. M.: Sovetskoe radio. 1985. 453 s. (In Russian).
  2. King R., Smit G. Antenny v material'nyh sredah. V 2-h kn. Kn. 1. Per. s angl. pod red. d-ra tehn. nauk V.B. Shtejnshlejgera. Moskva: Mir. 1984. S. 240-255; 408-413 (In Russian).
  3. Buzov A.L., Kljuev D.S., Kopylov D.A., Neshheret A.M. Matematicheskaja model' dvuhjelementnoj mikropoloskovoj izluchajushhej struktury s podlozhkoj iz kiral'nogo metamateriala. Radiotehnika i jelektronika. 2020. T. 65. № 4. S. 414-420 (In Russian).
  4. Buzov A.L. Sovremennye tendencii razvitija antennoj tehniki DKMV radiosvjazi. Antenny. 2007. № 10(125). S. 44-50 (In Russian).
  5. Buzov A.L., Kljuev D.S., Kopylov D.A., Neshheret A.M. Matematicheskaja model' dvuhjelementnoj mikropoloskovoj izluchajushhej struktury s podlozhkoj iz kiral'nogo metamateriala. Radiotehnika i jelektronika. 2020. T. 65. № 4. S. 380-387 (In Russian).
  6. Buzov A.L., Neshheret A.M. Perspektivy ispol'zovanija metamaterialov v podzemnyh KV-antennah. Materialy XV Mezhdunar. nauch.tehnich. konf. «II Nauchnyj forum telekommunikacii: teorija i tehnologii (TTT-2017). Fizika i tehnicheskie prilozhenija volnovyh processov (FiTPVP-2017). Pod red. O.I. Antipova. 2017. S. 62-64 (In Russian).
  7. Pestovskij I.N. Razrabotka putej sozdanija podzemnyh antennyh sistem dlja DKMV radiosvjazi: Diss. ... kand. tehn. nauk. Samara: Povolzhskij gos. Un-t telekommunikacij i informatiki. 2016. 195 s. (In Russian).
  8. Patent 2170997 (RF): MPK H01Q 21/06. Podzemnaja fazirovannaja antennaja reshetka. Bykov V.G.; zajavitel' Voennyj universitet svjazi, patentoobladatel' Upravlenie gosudarstvennogo nadzora za svjaz'ju po Sverdlovskoj oblasti. № 2000109222/09; zajavl. 12.04.00; opubl. 20.07.01 (In Russian).
  9. Patent 2185697 (RF): MPK H01Q 21/00. Podzemnaja fazirovannaja antennaja reshetka. Fitenko N.G., Chernoles V.P.; zajavitel' Voennyj universitet svjazi, patentoobladateli. № 2001102627/09; zajavl. 29.01.01; opubl. 20.07.02 (In Russian).
  10. Patent 2262164C1 (RF): MPK H01Q 1/04. Podzemnaja antenna. Artamoshin A.D., Busygin D.V., Galleev K.Ja., Gaponov B.F., Kuryshev A.A., Pestovskij I.N., Chernoles V.P., Jatul'chik O.V.; patentoobladateli Otkrytoe akcionernoe obshhestvo «Rossijskij institut moshhnogo radiostroenija» (RU), Voennyj universitet svjazi (RU). № 2004126396/09; zajavl. 30.08.04; opubl. 10.10.2005, Bjul. № 28 (In Russian).
  11. Patent 2472263 S2 (RF): MPK H01Q 21/00. Podzemnaja antenna. Procenko M.S., Rikonen D.Ju., Chernoles V.P.; patentoobladatel' Federal'noe gosudarstvennoe voennoe obrazovatel'noe uchrezhdenie vysshego professional'nogo obrazovanija «Voennaja akademija svjazi imeni Marshala Sovetskogo Sojuza S.M. Budennogo» Ministerstva Oborony Rossijskoj Federacii (Minoborony Rossii). № 2011112633/07; zajavl. 01.04.11; opubl. 10.10.12, Bjul. № 28 (In Russian).
  12. Patent 2400884 C1 (RF): MPK H01Q 21/00 (2006.01), RU 2400884C1. Podzemnaja ul'trakorotkovolnovaja antennaja reshetka. Artamoshin A.D., Galleev K.Ja., Gaponov B.F., Kuryshev A.A., Pestovskij I.N., Chernoles V.P.; patentoobladatel' Federal'noe gosudarstvennoe voennoe obrazovatel'noe uchrezhdenie vysshego professional'nogo obrazovanija «Voennaja akademija svjazi imeni Marshala Sovetskogo Sojuza S.M. Budennogo» Ministerstva Oborony Rossijskoj Federacii (Minoborony Rossii). № 2009133761/07; zajav. 08.09.2009; opubl. 27.09.2010, Bjul. № 27 (In Russian).
  13. Sljusar V. 60 let teorii jelektricheski malyh antenn. Nekotorye itogi. Jelektronika: Nauka, tehnologija, biznes. 2008. № 17. S. 10-19 (In Russian).
  14. Panchenko B.A., Nefedov E.I. Mikropoloskovye antenny. M.: Radio i svjaz'. 1986. 144 s. In Russian).
  15. Chen Zh., Chia M. Broadband planar antennas: Design and Applications. JohnWiley and Sons. 2006.
  16. Balanis A. Antenna theory antenna theory analysis and design fourth edition. Constantine Cover Image: Courtesy NASA/JPL-Caltech Copyright ©. 2016 by John Wiley & Sons, Inc.
  17. Patent 2400880 (RF): MPK H01Q9/00. Pechatnaja antenna. Bankov S.E., Davydov A.G.; patentoobladateli Otkrytoe akcionernoe obshhestvo «Moskovskoe konstruktorskoe bjuro «Kompas» (RU). № 2009139419/07; zajavl. 27.10.09; opubl. 27.09.10, Bjul. № 27 (In Russian).
  18. Patent 2400877 (RF): MPK H01Q9/00. Pechatnaja antenna. Bankov S.E., Davydov A.G.; patentoobladateli Otkrytoe akcionernoe obshhestvo «Moskovskoe konstruktorskoe bjuro «Kompas» (RU). № 2009137624/07; zajavl. 12.10.09; opubl. 27.09.10, Bjul. № 27 (In Russian).
  19. Electronics and Communication Engineering By. Kirti Sai Shukla (Roll No: 111EC0262). Under the supervision of Prof. S.K. Behera. Department of Electronics and Communication Engineering National Institute of Technology Rourkela 2015. Department of Electronics and Communication Engineering National Institute of Technology Rourkela-769008. Certificate. 
  20. Masoud Ahmadi. Low-profile microstrip end-fire antennas based on metamaterial substrates. A thesis submitted in partial fulfillment of the requirements for the degree of master of applied science. The college of graduate studies (Electrical Engineering) The university of British Columbia (Okanagan) January. 2018.
Date of receipt: 21.04.2021
Approved after review: 19.05.2021
Accepted for publication: 23.07.2021