350 rub
Journal Radioengineering №7 for 2021 г.
Article in number:
Effect of climatic factors on energy loss of millimeter range electromagnetic wave in passing through a precipitation layer on the mirror antenna reflector
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202107-14
UDC: 621.396.961
Authors:

M.Yu. Zvezdina1, A.M. Shaposhnikova2, Yu.A. Shokova3

1,2 FSUE «RNIIRS» (Rostov on the Don, Russia)

1,3 Don State Technical University (Rostov on the Don, Russia)

Abstract:

Problem statement. Communication systems transition to the millimeter wavelength range, as well as known theoretical studies on higher electromagnetic energy losses in precipitation in this range compared with the centimeter range have necessitated a scientific justification of an antenna protection method against climatic factors. This makes the chosen research topic relevant. 

Objective. Analysis of the climatic factors effect on the electromagnetic energy losses in the precipitation layer on the reflector of the millimeter wave range mirror antenna.

Results. It is shown that the estimation of electromagnetic energy losses in the precipitation layer on the metal reflector of the mirror antenna should be carried out with the use of the basic statements of meteorological electromagnetism, which unites the statements of electrodynamics and statistical meteorology. Thus, to estimate the electromagnetic energy losses in the precipitation layer on the metal reflector of the millimeter wavelength reflector antenna, the model of the flat multi-layer dielectric coating on the metal screen can be used, which allows to relate the reflection factor to the layer parameters: the electrical parameters of the precipitation (value of the relative permittivity and the tangent angle of dielectric losses) and the layer thickness. Analysis of the known methods of finding the electrical parameters of meteorological precipitation showed that, firstly, it is difficult to measure the imaginary component of the relative permittivity of rain, ice, and snow in the millimeter frequency range. Secondly, there is no approved calculation methodology for the electrical parameters of snow, and the known models depend on random factors - the specific density of snow at the time of measurement and the electrical parameters of the ice and water that make up the snow and their concentrations. Third, finding the electrical characteristics of any type of precipitation characteristic of a given location of the mirror antenna depends on the air temperature. To justify the thickness of precipitation layer on the antenna reflector, the following statistical data are also necessary: the intensity of rain in a given location with a given probability, the daily rate of snow layer and the thickness of ice, which can form in a given climatic region on the metal elements of the mirror structure, including the reflector. Obtained results of electromagnetic energy losses in precipitation layer for different cases of meteorological conditions for millimeter band and their comparison with data for centimeter wavelength range have shown that the greatest losses (from 12-13 dB to 92 dB) in millimeter wavelength range, especially at frequencies above 60 GHz are caused by snow precipitation. In the centimeter wavelength range the maximum losses (up to 10 dB) can be observed in rain.

Pages: 98-107
For citation

Zvezdina M.Yu., Shaposhnikova A.M., Shokova Yu.A. Effect of climatic factors on energy loss of millimeter range electromag- netic wave in passing through a precipitation layer on the mirror antenna reflector. Radiotekhnika. 2021. V. 85. № 7. P. 98−107. DOI: https://doi.org/10.18127/j00338486-202107-14 (In Russian)

References
  1. Gurbannijazov M.A. Teplovye vozdejstvija okruzhajushhej sredy na zerkal'nye antenny [Jelektronnyj resurs]. URL: http://www.iki.rssi.ru/oct4/2011/ppt/s5/gurbanniyazov.pdf (data obrashhenija: 20.01.2021) (In Russian).
  2. Suharevskij O.I., Nechitajlo S.V., Hlopov G.I., Vojtovich O.A. Vlijanie snezhnogo pokrova na harakteristiki izluchenija reflektornyh antenn. Radiotehnika i jelektronika. 2015. T. 60. № 6. S. 633−641 (In Russian).
  3. Rappaport T.S., Xing Yu., MacCartney G.R., Molisch A.F., Mellios E., Zhang J. Overview of millimeter wave communications for fifthgeneration (5G) wireless networks – with a focus on propagation models. IEEE Trans. on Antennas and Propagation. 2017. V. 65. № 3.  P. 6213−6230.
  4. Tajgin V.B., Lopatin A.V. Metod obespechenija vysokoj tochnosti formy reflektorov zerkal'nyh antenny kosmicheskih apparatov. Kosmicheskie apparaty i tehnologii. 2019. T. 3. № 4(30). S. 200−208 (In Russian).
  5. Blevis B.C. Losses due to rain on radomes and antenna reflecting surfaces. IEEE Trans. on Antennas and Propagate. 1965. V. 13. № 1.  P. 175-176.
  6. Jacobson M.D., Hogg D.C., Snider J.B. Wet reflector in millimeter-wave radiometry – Experiment and Theory. IEEE Trans. Geoscience and Remote Sensing. 1986. V. 24. № 10. P. 784−791.
  7. Jakimov A.N. Proektirovanie mikrovolnovyh antenn s uchetom vneshnih vozdejstvij. Penza: Izd-vo PGU. 2004. 206 s. (In Russian).
  8. Sarkiseev E.Zh., Ljapunov D.Ju., Bobihov R.S., Petrusjov A.S. Vizual'noe modelirovanie vetrovoj nagruzki na reflektor parabolicheskoj  antenny svjazi v programmnom produkte COMSOL MULTIPHYSICS. Sovremennye problemy nauki i obrazovanija. 2014. № 3. S. 137 (In Russian).
  9. Gorbolysov M.S., Jakimov A.N. Ocenka vlijanija parametrov antenny na harakteristiki radiolokacionnoj sistemy obnaruzhenija. Mezhvuz. sb. nauch. trudov «Cifrovye modeli v proektirovanii i proizvodstve RJeS». Pod red. N.K. Jur-kova. Penza: Izd-vo PGU. 2011. Vyp. 16.  S. 148-152 (In Russian).
  10. Patent № 2560809S1. MPK H 01 Q19/18 (RF), 20.08.2015. Sposob zashhity ot vetrovyh nagruzok na zerkal'nye antenny radiolokacionnyh stancij krugovogo obzora. / Demjanosov L.P. , Orlov I.V. , Shirokov I.V. (In Russian).
  11. Patent № 2646947S1. MPK H 01 Q15/16 (RF), 12.03.2018. Zerkal'naja antenna (varianty). Habarov V.V., Ljuzzhukin S.V. (In Russian).
  12. Ljuzzhukin S.V., Habarov V.V. Zerkal'naja antenna // Sb. trudov XV Molodezhnoj NTK «Radiolokacija i svjaz' – perspektivnye tehnologii». (Moskva, Rossija). Dekabr' 2017. M.: Mir nauki. 2017. S. 73-76. [Jelektronnyj resurs]: URL: http://izd-mn.com/PDF/25MNNPK17.pdf (data obrashhenija: 12.02.2021) (In Russian).
  13. Radioprozrachnye antennye ukrytija. AO CKBA (sajt) [Jelektronnyj resurs]: URL: http://ckba.net/print/178/ (data obrashhenija: 24.03.2021).
  14. Professional'nye sistemy antiobledenenija. OOO «Ajs Fri Sistems» [Jelektronnyj resurs]: URL: http://ifsystems.ru (data obrashhenija: 01.03.2021).
  15. Obukhovets V. Some new trends in phased antenna array designing. In Proc. Radiation and scattering of electromagnetic waves Conf. (Divnomorskoe, RU). June 2019. In IEEE RSEMW Proc. Conf. 2019. P. 20-23.
  16. Notaroš B.M. Meteorological electromagnetic. IEEE Antennas & Propagation Magazine. 2021. April. P. 14 27.      
  17. Tsang T.I., Kong J.A., Ding K.-H. Scattering of electromagnetic waves. Theories and application. V. 2. J. Willey&Sons Inc., 2000. 426 p.
  18. ITU-R Р.527-5 (08/2019). Electrical characteristics of the surface of the Earth. Ser. Р. Radiowave propagation. 22 p.
  19. Huining W., Pulliainen J., Hallikainen M. Effective permittivity of dry snow in the 18 to 90 GHz range. Progress in Electromagnetics  Research. PIER. 1999. V. 24. P. 119-138. 
  20. Shmakin A.B., Turkov D.V., Mihajlov A.Ju. Model' snezhnogo pokrova s uchetom sloistoj struktury i ee sezonnoj jevoljucii. Kriosfera Zemli. 2009. T. 13. № 4. S. 69-79 (In Russian).
  21. Frolov A.D., Macheret Ju.Ja. Ocenka soderzhanija vody v subpoljarnyh i teplyh lednikah po dannym izmerenij skorosti rasprostranenija radiovoln. MGI. 1998. Vyp. 84. S. 148-154 (In Russian).
  22. Uzlov V.A., Shishkov G.I., Shherbakov V.V. Osnovnye fizicheskie parametry snezhnogo pokrova. Trudy Nizhegorodskogo gosudarstvennogo tehnicheskogo universiteta im. R.E. Alekseeva. 2014. № 1(103). S. 119-129 (In Russian).
  23. Golunov V.A., Marechek S.V., Hohlov G.I. Osobennosti rassejanija mikrovolnovogo izluchenija v suhom pushistom snege. Zhurnal radiojelektroniki [jelektronnyj zhurnal]. 2018. № 6. URL: http://jre.cplire.ru/jun18/2/text.html (data obrashhenija: 20.04.2021) (In Russian).
  24. Golunov V.A., Kuz'min A.V., Skulachev D.P., Hohlov G.I. Rezul'taty jeksperimental'nogo issledovanija chastotnoj zavisimosti oslablenija, rassejanija i pogloshhenija millimetrovyh voln v suhom snezhnom pokrove. Radiotehnika i jelektronika. 2017. T. 62. № 9. S. 857-865 (In Russian).
  25. Bojarskij D.A., Tihonov V.V. Uchet stratigrafii snezhnogo pokrova pri modelirovanii ego izluchatel'noj sposobnosti v SVCh diapazone. Izvestija vuzov. Ser. Radiofizika. 1999. T. 42. № 9. S. 845-857 (In Russian).
  26. ODM 218.5.001-2008 Metodicheskie rekomendacii po zashhite i ochistke avtomobil'nyh dorog ot snega. Utv. rasporjazheniem Rosavtodora ot 01.02.2008 g. № 44-r (In Russian).
  27. GOST 16350-80. Klimat SSSR. Rajonirovanie i statisticheskie parametry klimaticheskih faktorov dlja tehnicheskih celej. M.: Izd-vo standartov. 1980. 150 s.(In Russian).
  28. Svod pravil 20.13330.2016. Nagruzki i vozdejstvija. Aktualizirovannaja redakcija SNiP 2.01.07-85 (s izmenenijami № 1, 2) (In Russian).
  29. Kurganov A.M. Tablicy parametrov predel'noj intensivnosti dozhdja dlja opredelenija rashodov v sistemah vodootvedenija. M.: Strojizdat. 1984. 111 s.(In Russian).
  30. Fedoseeva E.V. Sistemy radioteplokacionnogo kontrolja meteoparametrov s kompensaciej pomehovogo vlijanija vneshnej sredy. Pribory i sistemy. Upravlenie, kontrol', diagnostika. 2015. № 9. S. 44-48 (In Russian).
Date of receipt: 06.05.2021
Approved after review: 25.05.2021
Accepted for publication: 08.06.2021