350 rub
Journal Radioengineering №7 for 2021 г.
Article in number:
Method for determining the two-dimensional current density distribution function over the radiating structure based on chiral metamaterials
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202107-08
UDC: 621.396.67
Authors:

A.M. Neshcheret

JSC “SIP RS” (Samara, Russia)

Abstract:

The article is devoted to the development of a method of electrodynamic analysis and a two-dimensional mathematical model of strip radiating structures based on the apparatus of hypersingular equations in order to ensure the correct calculation of their characteristics when using relatively small computational resources.

A system of hypersingular integral equations with respect to the unknown transverse and longitudinal components of the current density distribution functions is obtained. This system of hypersingular equations was solved using the collocation method, where Gaussian nodes (zeros of Legendre polynomials) were used as collocation points. This approach allows for faster convergence compared to uniform partitioning.

Numerical results of calculations of current density distribution functions for various parameters of the radiating structure based on chiral metamaterials are obtained. It is shown that in the case of wide emitters, it is necessary to take into account both components of the current density distribution function.

The advantage of this method in comparison with universal analogues is the ability to accurately calculate the characteristics of radiating structures based on chiral metamaterials with wide emitters.

Pages: 50-61
For citation

Neshcheret A.M. Method for determining the two-dimensional current density distribution function over the radiating structure based on chiral metamaterials. Radiotekhnika. 2021. V. 85. № 7. P. 50−61. DOI: https://doi.org/10.18127/j00338486-202107-08 (In Russian)

References
  1. Buzov A.L., Klyuev D.S., Nescheret A.M. Vozmozhnosti sovershenstvovaniya antennoy tehniki putem ispolzovaniya kiralnyh metamaterialov // Fizika volnovyh processov i radiotehnicheskie sistemy. 2018. № 3. T. 21.S. 66−72.
  2. Caloz C., Sihvola A. Electromagnetic Chirality. Part 2: The Macroscopic Perspective // IEEE Antennas and Propagation Magazine. 2020. V. 62. № 2. R. 58−71.
  3. Toscano A., Vegni L. Evaluation of the resonant frequencies and bandwidth in microstrip antennas with a chiral grounded slab // International Journal of Electronics. 1996. № 81(6). R. 671–676.
  4. Zebiri C., Lashab M., Benabdelaziz F. Asymmetrical effects of bi-anisotropic substrate-superstrate sandwich structure on patch resonator // Progress In Electromagnetics Research. 2013. V. B 49. R. 319−337.
  5. Buzov A.L., Klyuev D.S., Kopylov D.A. Nescheret A.M. Impedansnye ha-rakteristiki dvuhelementnoy antennoy reshetki s kiralnoy podlozhkoy // Pisma v ZhTF. 2018. № 23. T. 44. S. 37−45.
  6. Nescheret A.M. Analiz mikropoloskovyh antenn s podlozhkami iz kiralnyh metamaterialov metodom singulyarnyh integralnyh uravneniy // Fizika volnovyh processov i radiotehnicheskie sistemy. 2018. № 4. T. 21. S. 6−16.
  7. Klyuev D.S., Neshcheret A.M., Osipov O.V., Potapov A.A., Sokolova Yu.V. The Method of Singular Integral Equations in the Theory of Microstrip Antennas Based on Chiral Metamaterials // 12th Chaotic Modeling and Simulation International Conference. Springer Proceedings in Complexity. 2020. R. 267−294.
  8. Jianxing Ni. Analysis of shielded and open microstrip lines of double negative metamaterials using spectral domain approach (SDA) // Iowa State University. Ames, Iowa. 2008. R. 65.
  9. Lindell I.V., Sihvola A.H., Tretyakov S.A., Viitanen A.J. Electromagnetic waves in chiral and bi-isotropic media. London: Artech House. 1994. 291 p.
  10. Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integraly i ryady. Specialnye funkcii. M.: Nauka. Gl. red. fiz-mat. lit. 1983. 752 s.
  11. Vaynikko G.M., Lifanov I.K., Poltavskiy L.N. Chislennye metody v gipersingulyarnyh integralnyh uravneniyah i ih prilozheniya. M.: Yanus-K. 2001.
  12. Zaharov E.V., Ryzhakov G.V., Setuha A.V. Chislennoe reshenie trehmernyh zadach difrakcii elektromagnitnyh voln na sisteme idealno provodyaschih poverhnostey metodom gipersingulyarnyh integralnyh uravneniy // Differencialnye uravneniya. 2014. T. 50. № 9. S. 12−53.
  13. Saffman P.G. Vortex Dynamics. Cambridge: Cambridge University Press. 1992. 311 r.
  14. Ilinskiy A.S., Perfilov O.Yu., Samohin A.B. Iteracionnyy metod resheniya integralnyh uravneniy teorii provolochnyh antenn // Matematicheskoe modelirovanie. 1994. T. 6. № 3. S. 52−59.
Date of receipt: 11.05.2021
Approved after review: 28.05.2021
Accepted for publication: 02.06.2021