T.A. Mirtalibov¹, S.V. Kharalgin², N.P. Kolesnikov³, G.V. Kulikov4, B.V. Khlopov5
1 “Almaz-Antey” Corp. (Moscow, Russia)
2,3,5 JSC “Central radio-research institute named after academician A.I. Berg” (Moscow, Russia)
4 MIREA − Russian Technological University (Moscow, Russia)
Problem statement. The current methods of processing the polarization characteristics are widely used in radar and communications. An urgent task in SEM systems in EW conditions is to increase the signal-to-noise, signal-to-noise ratio when working on reception, as well as to increase the reliability in determining the types of IRI. Solutions to this problem can be implemented by selecting the optimal structure and method of signal processing of radio sources (IRI) in a radio-technical onboard complex with a small-sized bipolarization antenna system.
Goal. Achieving optimal detection characteristics and increasing reliability in determining the types of IRI by processing the signals of a bipolarized antenna, during the synthesized reception process in a space-based SEM system.
Results. The relevance of using a bipolarization antenna in SEM systems with a uniform a priori probability distribution of the received polarization is considered. The results obtained confirm the possibility of increasing the signal-to-noise ratio of the radio line by an average of 1.7 dB. The corresponding increase in the energy potential is equivalent to an increase in the probability of correct detection of the IRI. Processing of orthogonal components makes it possible to determine the polarization characteristics of the IRI. The presence of statistical data on the correlation interval can reveal the facts of electronic suppression of on-board equipment. The impact of noise interference at the input, if there is a fact of detection, will lead to a reduction in the correlation interval during processing. By processing statistical data on the polarization characteristics of the IRI, it is possible to select the sources of interest against the background of interference.
Practical significance. The results obtained allow us to increase the energy potential of the SEM system by optimal processing of the orthogonal components of the received signal, as well as to increase the reliability in determining the types of IRI, which will allow us to achieve the goal of creating new EW devices and means when synthesizing the reception process in the space-based SEM system.
Mirtalibov T.A., Kharalgin S.V., Kolesnikov N.P., Kulikov G.V., Khlopov B.V. Synthesis of the reception process in the space-based SEM system under EW conditions. Radiotekhnika. 2021. V. 85. № 5. P. 34−48. DOI: https://doi.org/10.18127/j00338486-202105-04 (In Russian)
- Andreev G.I., Sozinov P.A., Tihomirov V.A. Osnovy teorii prinjatija reshenij. Nauchnaja serija «Prinjatie reshenij v upravlenii». Monografija. M.: Radiotehnika. 2017. 643 s. (In Russian).
- Andreev G.I., Sozinov P.A., Tihomirov V.A. Metodologija modelirovanija slozhnyh tehnicheskih sistem. Nauchnaja serija «Prinjatie reshenij v upravlenii». Monografija. M.: Radiotehnika. 2020. 512 s. (In Russian).
- Patent na izobretenie RU 2710363 C1. Bortovoj obnaruzhitel' s kompensaciej variacij magnitnyh polej. Hlopov B.V., Krutov M.M, Fesenko M.V., Andreev G.I., Tishhenko V.A., Samojlova V.S. Zajavka 10.07.2019, opublikovan 26.12.2019 (In Russian).
- Gorbunov Ju.N. Cifrovye sistemy SDC i ih optimizacija. M.: Federal'noe agentstvo po obrazovaniju. 2008. 129 s. (In Russian).
- Jelektrodinamika i tehnika SVCh: Uchebnik dlja vuzov. M.: Vysshaja shkola. 1990. 335 s. (In Russian).
- Zashhita ot radiopomeh. Pod red. M.V. Maksimova. M.: Sovetskoe radio. 1976. 496 s. (In Russian).
- Mel'nikov Ju.P. Vozdushnaja aktivno-passivnaja razvedka nadvodnyh korablej. Metody ocenki jeffektivnosti. Monografija. M.: Radiotehnika. 2017. 500 s. (In Russian).
- Spravochnik po radiolokacii. Pod red. M.I. Skolnika. Per. s angl. pod obshhej red. V.S. Verby. Kn. 2. M.: Tehnosfera. 2015. 672 s. (In Russian).
- Kanarejkin D.B., Pavlov N.F., Potehin V.A. Poljarizacija radiolokacionnyh signalov. M.: Sovetskoe radio. 1966. 440 s. (In Russian).
- Rodimov A.P., Popovskij V.V. Statisticheskaja teorija poljarizacionno-vremennoj obrabotki signalov i pomeh. M: Radio i svjaz'. 1984. 272 s. (Statisticheskaja teorija svjazi, vyp. 21) (In Russian).
- Djevis K. Radiovolny v ionosfere. Pod red. A.A. Korchaka. Per. s angl. I.V. Kovalevskogo, A.P. Kropotkina. M.: Mir. 1973. (In Russian).
- Moshkov A.V., Pozhidaev V.N. Faradeevskoe vrashhenie ploskosti poljarizacii signala nadgorizontnyh radiolokacionnyh stancij ul'travysokih chastot. Zhurnal radiojelektroniki. 2018. № 3. S. 1−14 (In Russian).
- Patent na izobretenie RU 2655 033 C1. Malogabaritnyj dvuhpoljarizacionnyj volnovodnyj izluchatel' fazirovannoj antennoj reshetki s vysokoj razvjazkoj mezhdu kanalami. Haralgin S.V., Ponomarev L.I., Priluckij A.A., Vasin A.A., Dobychina E.M., Malahov R.Ju., Terehin O.V. Zajavka 06.07.2017, opublikovan 23.05.2018 (In Russian).
- Djomin D.A., Chubinskij N.P. Obluchatel' s dvumja ortogonal'nymi krugovymi poljarizacijami. Zhurnal radiojelektroniki. 2014. № 6. S. 1−13 (In Russian).
- Davis D., Digiondomenico O., Kempic J. A new type of circularly polarized antenna element. Antennas and Propagation Society International Symposium. 1967. V. 5. Р. 26−33.
- Chen M. and Tsandoulas G. A wide-band square-waveguide array polarizer. IEEE Transactions on Antennas and Propagation. 1973. V. 21. № 3. Р. 389−391.
- Voskresenskij D.I., Gostjuhin V.L., Maksimov V.M., Ponomarev L.I. Ustrojstva SVCh i antenny. Pod red. D.I. Voskresenskogo. Izd. 2-e, dop. i pererab. M.: Radiotehnika. 2006. 376 s. (In Russian).
- Mirtalibov T.A., Kolesnikov N.P. Hlopov B.V., Ravinskij S.S. Osnovy organizacii raboty sredstv radiojelektronnogo monitoringa v uslovijah radioprotivodejstvija. Radiojelektronnaja bor'ba. 2020. T. 1. № 1. S. 25-32. DOI: 10.18127/j00338486-202007(13)-04 (In Russian).