350 rub
Journal Radioengineering №4 for 2021 г.
Article in number:
First radiophoton phased antenna array
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202104-17
UDC: 621.396.67:621.378.8 621.396.624:621.3.049
Authors:

D.F. Zaitsev1, V.M. Andreev2, I.A. Bilenko3, A.A. Berezovsky4, P.Yu. Vladislavsky5,  Yu.B. Gurfinkel6, L.I. Tsvetkova7, V.S. Kalinovsky8, N.M. Kondratyev9, V.N. Kosolobov10,  V.F. Kurochkin11, S.O. Slipchenko12, N.V. Smirnov13, B.V. Yakovlev 14

1,4−7,10,11,13,14 JSC Radio Engineering Corporation Vega, Laboratory "Radiophoton systems" (Moscow, Russia)

2,8,12 FTI RAS named after A.F. Ioffe (Moscow, Russia)

3,9 MKTST (Москва, Россия)

Abstract:

The article describes the results of research on a demonstration model of the world's first radio-photon phased array, which has a unique set of characteristics – non-volatility, broadband, low profile, conformality, distribution, high resolution, a large range of scanning angles and high speed, and also has a complete galvanic isolation between the antenna array and the main equipment. The ROFAR layout, with an antenna array consisting of 8 transmitting and 8 receiving emitters with a profile height of λ / 20, operates in the UHF frequency range, including the P-band (instantaneous band of the order of 400 MHz) and has a range resolution of 1.5 to 7 cm, an angle resolution of the order of less than 2o, a range of scanning angles in azimuth ± 60o, and a beam switching time of less than 50 ns. The total pulse power of the ROFAR is 84 W, the efficiency of the PPM with fully radiophoton transmission paths, in which there are no powerful electronic or optical amplifiers, is ~ 25%.

Antenna array is completely non-volatile, i.e., its power as a powerful transmitting paths and receiving paths is carried out only via an optical fiber (optical cable), on the antenna lattice any electronic or radiophonic devices require electrical energy.

This ensures its complete galvanic isolation from the main radiophotonic and electronic equipment and high protection from electromagnetic influences of almost any intensity and duration.

Almost all the key radiophotonic components of ROFAR provide unique characteristics of domestic development and manufacture.

Pages: 153-164
For citation

Zaitsev D.F., Andreev V.M., Bilenko I.A., Berezovsky A.A., Vladislavsky P.Yu., Yu.B. Gurfinkel, Tsvetkova L.I., Kalinovsky V.S., Kondratyev N.M., Kosolobov V.N., Kurochkin V.F., Slipchenko S.O., Smirnov N.V., Yakovlev B.V. First radiophoton phased antenna array.  Radiotekhnika. 2021. V. 85. № 4. P. 153−164. DOI: https://doi.org/10.18127/j00338486-202104-17 (In Russian)

References
  1. Urick V.J. Microvawe Photonics at DARPA: Past, Present and Future. Proc. of the Conf. CLEO: Science and Innovations. 2018. V. 1. Р. 1−6. cleo_si. 2018. sm1c.6
  2. Pan S. and Zhang Y. Microwave Photonic Radars. IEEE Journal of Lightwave Technology. 2020. V. 38. № 19. Р. 5450-5484.
  3. Ghelfi P., Laghezza F., Scotti F., Serafino G., Capria A., Pinna S., Onori D., Porzi C., Scaffardi M., Malacarne A., Vercesi V., Lazzeri E., Berizzi F., Bogoni A. A fully photonics-based coherent radar system. Nature. 2014. V. 507. Р. 341−345.
  4. Berland F., Elwan H.H, Marie-Joseph Y., Boudesocque D., Decroze C., Di Bin P., Fromenteze T., and Aupetit-Berthelemot C.  C-band microwave photonic mimo imaging system. 16th IEEE European Radar Conference (EuRAD). 2019. Р. 277–280.
  5. Maresca S., Serafino G., Scotti F., Amato F., Lembo L., Bogoni A., and Ghelfi P. Photonics for coherent mimo radar: An experimental multitarget surveillance scenario. 20th IEEE International Radar Symposium (IRS). 2019. Р. 1–6.
  6. Lembo L., Maresca S., Serafino G., Scotti F., Amato F., Ghelfi P., and Bogoni A. In-field demonstration of a photonic coherent mimo distributed radar network. IEEE Radar Conference (Radar Conf). 2019. Р. 1–6.
  7. Wang H., Li S., Xue X., Xiao X., and Zheng X. Distributed coherent microwave photonic radar with a high-precision fiber-optic time and frequency network. Optics Express. 2020. V. 28. № 21. Р. 31241−31252.
  8. Gao B., Zhang F., Zhao E., Zhang D., and Pan S. High-resolution phased array radar imaging by photonics-based broadband digital beamforming. Optics Express. 2019. V. 27. № 9. Р. 13194−13203.
  9. Konkol M.R., Ross D.D., Shi S., Harrity C.E., Wright A.A., Schuetz C.A., and Dennis W. Prather High-Power Photodiode-IntegratedConnected Array Antenna. JOURNAL OF LIGHTWAVE TECHNOLOGY. 2017. V. 35. № 10. Р. 2010−2016.
  10. Dorsey W.M., Parent M.G., Long S.A. RF Photonic, In-Situ, Real-Time Phased Array Antenna Calibration System. Naval Research Laboratory. 2010. V. NRL/MR/5310--10-9312. 59 p.
  11. Bahrah L.D., Zajcev D.F. Fazirovannye antennye reshetki na osnove raspredelennyh opticheskih antennyh modulej. DAN. 2004. T. 394. № 4. S. 465-468 (In Russian).
  12. Patent № 2298810 (Rossija). Priemno-peredajushhij optojelektronnyj modul' AFAR. Zajcev D.F. № 2005130539; Zajavl. 4.10.2005 (In Russian).
  13. Zajcev D.F. Nanofotonika i ee primenenie. M.: Izd. «AKTEON». 2012. 445 s. (In Russian).
  14. Pikhtin N.A., Slipchenko S.O., Sokolova A.Z., Stankevich A.L., Vinokurov D.A., Tarasov I.S., Alferov Zh.I. 16W continuous-wave output power from 100 μm-aperture laser with quantum well asymmetric heterostructure. Electronics letters. 2004. V. 40. № 22. Р. 1413−1414.
  15. Zajcev D.F. Issledovanie chastotnogo potenciala moshhnyh kvantovo-razmernyh geterolazerov. Antenny. 2013. Vyp. 8. S. 55−59 (In Russian).
  16. Alferov Zh.I., Andreev V.M., Rumjancev V.D. Tendencii i perspektivy razvitija solnechnoj fotojenergetiki. Fizika i tehnika poluprovodnikov. 2004. T. 38. Vyp. 8. S. 937−947 (In Russian).
  17. Andreev V.M., Zajcev D.F., Novikov N.Ju., Kalinovskij V.S., Mordasov D.V., Slipchenko S.O., Fadeev A.I., Tarasov I.S. Moshhnye shirokopolosnye linii «Radiopovoloknu» s jenergonezavisimymi fotonnymi radiochastotnymi antennami. Radiotehnika. 2016. № 11.  S. 177−183 (In Russian).
  18. Andreev V.M., Zajcev D.F., Novikov N.Ju., Kalinovskij V.S., Mordasov D.V., Slipchenko S.O., Fadeev A.I., Tarasov I.S. Maket fragmenta ROFAR s jenergonezavisimoj peredajushhej antennoj i moshhnym shirokopolosnym radiofotonnym peredajushhim traktom, rabotajushhim v rezhime klassa V. Radiotehnika. 2017. № 8. S. 72−76 (In Russian).
  19. Gorodeckij M.L. Opticheskie mikrorezonatory s gigantskoj dobrotnost'ju. M.: Fizmatlit. 2011. 416 s. (In Russian).
  20. Zajcev D.F., Pavlov N.G., Kondrat'ev N.M., Gorodeckij M.L. Modelirovanie moduljatora na mikrorezonatorah s modami shepchushhej galerei. Radiotehnika. 2016. № 1. S. 57−65 (In Russian).
  21. Yablonovitch E. Inhibited Spontaneours Emission in Solid-State Physics and Electronics. Physical Rev. Lett. 1987. V. 58. № 20.  Р. 2059−2062.
  22. Yablonovitch E., Gmitter T. J. Photonic Band Structure: The Face – Centered – Cubic Case. Physical Rev. Lett. 1989. V. 18. № 18.  Р. 1950−1953.
  23. Sievenpiper D., Zhang L., Broas F. J., Alexopolous N.G., Yablonovitch E. High Impedance Electromagnetic Surfaces with a Forbidden Frequency Band. IEEE Trans. on Microwave Theory and Tech. 1999. V. 47. № 11. Р. 2059−2074.
  24. Zajcev D.F. Antenny na osnove materialov s jelektromagnitnymi zapreshhennymi zonami (EBG). Antenny. 2008. Vyp. 10. S. 62−79 (In Russian).
  25. Zajcev D.F. Nanofotonika i ee primenenie. M.: Izd. «AKTEON». 2012. 445 s. (In Russian).
  26. Best S.R., Hanna D.L. Design of a Broadband Dipole in Close Proximity to an EBG Ground Plane. IEEE Antennas and Propagation Magazine. 2008. V. 50. № 6. Р. 52−64. 
  27. Yuan T., Ouslimani H.H., Priou A.C., Lacotte G. and Collignon G. Dual-Layer EBG Structures for Low-Profile “Bent” Monopole Antennas. Progress In Electromagnetics Research B. 2013. V. 47. Р. 315–337.
  28. Kern D.J., Werner D.H., and Lisovich M. Metaferrites: Using Electromagnetic Bandgap Structures to Synthesize Metamaterial Ferrites. IEEE Trans. Antennas and Propagation. 2005. V. 53. № 4. Р. 1382-1389.
  29. Mitchell G., Weiss S. An Overview of ARL’s Low Profile Antenna Work Utilizing Anisotropic Metaferrites. Proceedings of the IEEE International Symposium on Phased Array Systems and Technology. 2016. № 18. Р. 1-5. 
  30. Spravochnik po radiolokacii. V 4-h tt. Pod. red. M.I. Skolnika. M.: Sovetskoe radio. 1977. T. 2: Radiolokacionnye antennye ustrojstva. 438 s. (In Russian).
  31. Lee J.J., Loo R.Y., Livingston S., et al. Photonic Wideband Array Antennas. IEEE Trans. Antennas and Propagation. 1995. V. 43. № 9. Р. 966-982.
  32. Shirokopolosnyj usilitel' SVCh dlja PPM AFAR S-i L-diapazonov M421315-1 i M421315-2. OKB «Planeta». 2019. http://www.okbplaneta.ru (In Russian).
  33. Katalog produkcii AO «NPF «Mikran». SVCh jelektronika. Tomsk. 2016. www.micran.ru (In Russian).
  34. Goncharov A. Matrichnye sistemy jelektropitanija – novyj jetap razvitija tehnologij AFAR. Sovremennaja jelektronika. 2015. № 6. S. 2-5. www.soel.ru (In Russian).
  35. Kalinin Ju.N., Miljaev P.V., Miljaev A.P., Morev V.L., Popikov M.V. Izmerenie harakteristik antenn metodami blizhnej i dal'nej zony vo vremennoj oblasti. Trudy Mezhdunar. nauchn. konf. «Izluchenie i rassejanie JeMV» (IRJeMV-2009). Taganrog. 2009. S. 355-359 (In Russian).
Date of receipt: 24.02.2021
Approved after review: 12.03.2021
Accepted for publication: 26.03.2021