E.V. Ovchinnikova¹, S.G. Kondratieva², P.A. Shmachilin³, Nguen Dinh To4, E.V. Gadzhiev5, A.O. Perfilova6
1−5 Moscow Aviation Institute (National Research University) (Moscow, Russia)
2,3 Peoples Friendship University of Russia (Moscow, Russia)
5 JC “VNIIEM Corporation” (Moscow, Russia)
6 LLC “Inspider” (Moscow, Russia)
Horn and waveguide antennas provide high reliability and low losses; therefore, they are widely used in on-board satellite communication systems (SСS). One of the most important characteristics of such antennas is the maintenance of a high ellipticity coefficient over a wide angle sector. Waveguide polarizers have good polarization characteristics. Polarizers based on square waveguides are easier to manufacture and calculate, because the inhomogeneities, due to which a 90° phase shift occurs between the orthogonal field components, are located in the orthogonal planes of the Cartesian coordinate system. At present, various combinations of thin diaphragms located on two opposite walls of the waveguide or sections of corrugated waveguides are widely used to construct polarizers on a square waveguide. A waveguide stepped polarizer, which is simpler in design, is a square waveguide divided into two standard rectangular waveguides by a conducting partition. The simplest form of a septum-polarizer with a linear baffle. The article developed models of waveguide emitters based on septum-polarizers with a linear partition. The parametric optimization of the emitters was carried out in order to achieve the ellipticity coefficient of at least 0.7 in the sector of angles ± 70°. The directivity characteristics of an antenna array of 8 elements are determined. A significant influence of the interaction of radiators in the antenna array on the dependence of the ellipticity coefficient on angular coordinates is shown.
Ovchinnikova E.V., Kondratieva S.G., Shmachilin P.A., Nguen Dinh To, Gadzhiev E.V., Perfilova A.O. Modeling an antenna array from waveguide radiators based on septum polarizers. Radiotekhnika. 2021. V. 85. № 4. P. 108−118. DOI: https://doi.org/10.18127/j00338486-202104-12 (In Russian)
- Zhuk M.S., Molochkov Ju.B. Proektirovanie linzovyh, skanirujushhih, shirokodiapazonnyh antenn i fidernyh ustrojstv. M.: Jenergija. 1973. 439 s. (In Russian).
- Krylov Ju.V. Shirokopolosnye chastotno-poljarizacionnye selektivnye ustrojstva antenn kosmicheskih apparatov: Avtoref. diss. … kand. tehn. nauk. Krasnojarsk. 2018 (In Russian).
- Ming Chen, Tsandoulas G. A wide-band square-waveguide array polarizer. IEEE Transactions on Antennas and Propagation. 1973. V. 21. № 3. Р. 389–391.
- Djomin D.A., Chubinskij N.P. Obluchatel' s dvumja ortogonal'nymi krugovymi poljarizacijami. Zhurnal radiotehniki. 2014. № 6 (In Russian).
- Fam Van Vin'. Modelirovanie antennyh sistem sputnikovogo televidenija. Trudy Mezhdunar. molodezhnoj nauch. konf. «Gagarinskie chtenija» (17-20 aprelja 2018 g.). M.: MAI. S. 223−224 (In Russian).
- Simmons A.J. Phase shift by periodic loading of waveguide and its application to broad-band circular polarization. IRE Trans. Microwave Theory Tech. 1955. V. 3. № 6. P. 18−21.
- Solov'janova I.P., Najmushin M.P., Shabunin S.N. Metodicheskie ukazanija k laboratornym rabotam 3, 4 po kursam «Jelektrodinamika i rasprostranenie radiovoln» i «Jelektromagnitnye polja i volny». Ekaterinburg: GOU VPO UGTUUPI. 2006. 37 s. (In Russian).
- Rebollar J. Broad-band corrugated polarisers using different kinds of corrugations. IEEE AP-S Int. Symp.: digest. Vancouver. 1985. P. 639−642.
- Virone G., Tascone R., Baralis M., et al. A novel design tool for waveguide polarizers. IEEE Trans. Microwave Theory Tech. 2005. V. 53. № 3. P. 888−894.
- Virone G., Tascone R., Peverini O.A., et al. Combined-phase-shift waveguide polarizer. IEEE Microwave and Wireless Components Letters. 2008. 18. N 8. P. 509−511.
- Tucholke U., Arndt F., Wriedt T. Field theory design of square waveguide iris polarizers. IEEE Trans. Microwave Theory Tech. 1986. V. 34. № 1. P. 156−160.
- Liu Y., Li F., Li X., He H. Design and optimization of wide and dual band waveguide polarizer. Global Symp. Millimeter Waves: symp. proc. Nanjing. 2008. P. 384−386.
- Rebollar J.M., de Frutos J. Dual-band compact square waveguide corrugated polarizer. IEEE AP-S Int. Symp.: symp. digest. Orlando. 1999. P. 962−965.
- Rud' L.A., Shpachenko K.S. Jelektrodinamicheskaja model' i harakteristiki poljarizatorov na otrezkah kvadratnogo volnovoda s diagonal'no raspolozhennymi kvadratnymi vystupami. Radiofizika i jelektronika. 2012. T. 3(17). № 1. S. 3−10 (In Russian).
- Toyama N. A cross-shaped horn and a square waveguide polarizer for a circularly polarized shaped beam antenna for a broadcasting satellite. IEEE MTT-S Int. Symp.: symp. digest. Washington. 1980. P. 299−301.
- Levy R. The relationship between dual mode cavity crosscoupling and waveguide polarizers. IEEE Trans. Microwave Theory Tech. 1995. V. 43. № 11. P. 2614 2620.
- Manuilov M.B. Jelektrodinamicheskij analiz konechnyh volnovodnyh antennyh reshetok, chastotno-selektivnyh i raspredelitel'nyh ustrojstv na grebnevyh i prjamougol'nyh volnovodah: Avtoref. diss. … dokt. fiz.-mat. nauk. Rostov-na-Donu. 2007 (In Russian).
- Frolov O.P., Val'd V.V. Zerkal'nye antenny dlja zemnyh stancij sputnikovoj svjazi. M.: Gorjachaja linija − Telekom. 2008. 496 s. (In Russian).
- Septum Polarizers and Feeds: Paul Wade, W1GHZ ©2003
- Kim I., Kovitz J.M., Rahmat-Samii Y. Enhancing the power capabilities of the stepped septum using an optimized smooth sigmoid profile. IEEE Antennas and Propagation Magazine. Oct. 2014. V. 56. № 5. P. 16 42. DOI: 10.1109 / MAP.2014.6971913.
- Dvurechenskij V.D., Telepnev P.P., Fedotov A.Ju. Sputnikovaja antenna s jellipticheskoj poljarizaciej. Voprosy jelektromehaniki. Trudy VNIIJeM. 2013. T. 134. № 3. S. 27–30 (In Russian).