350 rub
Journal Radioengineering №4 for 2021 г.
Article in number:
Low complexity decoding algorithm for differential space-time block coding transmission systems
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202104-10
UDC: 621.396.93
Authors:

M.S. Tokar

Pridnestrovian State University of Taras Shevchenko (Tiraspol, Pridnestrovian Republic)

Abstract:

The research object of this work is decoding methods and algorithms, including those used in multi-antenna radio communication systems (Multiple Input Multiple Output – MIMO). In view of the fact that the MIMO technology allows to increase the spectral efficiency of communication systems, it is recommended by the International Telecommunication Union for direct application in the deployment of 5G mobile networks and in the prospects for 6G. These communication networks have high requirements for spectral efficiency, noise immunity and capacity, which, among other things, leads to an increase in the computational resource of the receiver, the value of which directly depends on the decoding algorithms used. The increase in the complexity of the receiver entails an increase in its cost. Thus, the task of developing a decoding algorithm with low computational complexity and applicable for space-time block coding systems, including differential coding, was posed in the work. 

The article proposes a matrix decoding algorithm that meets the above requirements and is based on the use of Voronoi partitioning, according to which a decoding matrix is compiled, the values of the elements of which are the numbers of the symbols of the used modulation constellation. The applicability of the developed algorithm in MIMO systems depends on the signal-to-noise ratio in the channel. The algorithm can also be used in SISO systems, while its computational complexity is several mathematical operations and does not depend on the size of the modulation constellation, bandwidth stability and signal-to-noise ratio. Since this work is a continuation of research devoted to the development and implementation of the transmission method with differential space-time block coding (DSTBC) proposed by the author, then during the simulation the developed decoding algorithm was introduced into the DSTBC decoder. 

The presented results of modeling and comparing the computational complexity of a typical method for transmitting the DSTBC and the developed method of DSTBC using the maximum likelihood algorithm and the matrix decoding algorithm demonstrate a decrease in the computational complexity of the developed method of DSTBC starting from the signal-to-noise ratio in the channel of about  10 dB. Proceeding from this, the implementation of the developed method for the transmission of the DSTBC together with the matrix decoding algorithm is an effective solution aimed at reducing the computing resource of the transmission systems.

Pages: 89-98
For citation

Tokar M.S. Low complexity decoding algorithm for differential space-time block coding transmission systems. Radiotekhnika. 2021.  V. 85. № 4. P. 89−98. DOI: https://doi.org/10.18127/j00338486-202104-09 (In Russian)

References
  1. Recommendation ITU-R M.2150-0 (02/2021) Detailed specifications of the terrestrial radio interfaces of International Mobile Telecommunications-2020 https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2150-0-202102-I!!PDF-E.pdf 
  2. Recommendation ITU-R M.2083-0 (09/2015) IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf 
  3. Rappaport T.S. et al. Special session on mmWave communications. Proc. ICC. Budapest, Hungary. Jun. 2013.
  4. Ghosh A. et al. Millimeter-Wave Enhanced Local Area Systems: A High-Data-Rate Approach for Future Wireless Networks. IEEE J. Select. Areas Commun. 2014. V. 32. № 6. Р. 1152-1163. DOI: 10.1109/JSAC.2014.2328111
  5. Saad M., Akkad N., Hijazi H., Chamas A., Bader F., Palicot J. Novel MIMO Technique for Wireless Terabits Systems in sub-THz Band. IEEE Open Journal of Vehicular Technology. 2021. DOI: 10.1109/OJVT.2021.3054737
  6. Бакулин М.Г., Крейнделин В.Б. Проблема повышения спектральной эффективности и емкости в перспективных системах связи 6G. T-Comm. 2020. V. 14. № 2. Р. 25-31. DOI: 10.36724/2072-8735-2020-14-2-25-31
  7. Yang S., Hanzo L. Fifty Years of MIMO Detection: The Road to Large-Scale MIMOs. IEEE Communications Surveys & Tutorials. 2015.  V. 17. № 4. Р. 1941-1988. DOI: 10.1109/COMST.2015.2475242
  8. Trotobas B., Nafkha A., Louët Y. A Review to Massive MIMO Detection Algorithms: Theory and Implementation. Radio Frequency  Antennas for 5G. IOT and Medical Applications. 2020. DOI: 10.5772/intechopen.93089 
  9. Damen M.O., Gamal H.El, Caire G. On maximum-likelihood detection and the search for the closest lattice point. IEEE Transactions on Information Theory. 2003. V. 49. № 10. Р. 2389-2402. DOI: 10.1109/TIT.2003.817444
  10. Ranjitha M., Kirthiga S., Jayakumar M., Nirmala Devi M. Quaternion Orthogonal Design based Sphere Decoder for MIMO  Systems. International Conference on Communication and Signal Processing (ICCSP). Chennai, India. 2019. Р. 0621-0625.  doi: 10.1109/ICCSP.2019.8698010
  11. Hassibi B., Vikalo H. On the sphere-decoding algorithm I. Expected complexity. IEEE Transactions on Signal Processing. 2005.  V. 53. № 8. Р. 2806-2818. DOI: 10.1109/TSP.2005.850352
  12. Vikalo H., Hassibi B. On the sphere-decoding algorithm II. Generalizations, second-order statistics, and applications to communications. IEEE Transactions on Signal Processing. 2005. V. 53. № 8. Р. 2819-2834. DOI: 10.1109/TSP.2005.850350
  13. Li Z., Cheng X., Han S., Wen M., Yang L., Jiao B. A Low-Complexity Optimal Sphere Decoder for Differential Spatial Modulation. IEEE Global Communications Conference (GLOBECOM). San Diego, CA. USA, 2015. Р. 1-6. DOI: 10.1109/GLOCOM.2015.7417823
  14. Ding Y., Li N., Wang Y., Feng S., Chen H. Widely Linear Sphere Decoder in MIMO Systems by Exploiting the Conjugate Symmetry of Linearly Modulated Signals. IEEE Transactions on Signal Processing. 2016. V. 64. № 24. Р. 6428-6442. DOI: 10.1109/TSP.2016.2598317
  15. Jalden J., Elia P. Sphere Decoding Complexity Exponent for Decoding Full-Rate Codes Over the Quasi-Static MIMO Channel. IEEE Transactions on Information Theory. 2012. V. 58. № 9. Р. 5785-5803. DOI: 10.1109/TIT.2012.2203581
  16. Xu C., Ng S. X., Hanzo L. Multiple-Symbol Differential Sphere Detection and Decision-Feedback Differential Detection Conceived for Differential QAM. IEEE Transactions on Vehicular Technology. 2016. V. 65. № 10. Р. 8345-8360. DOI: 10.1109/TVT.2015.2512179 17. Jalden J., Ottersten B. On the complexity of sphere decoding in digital communications. IEEE Transactions on Signal Processing. 2005. V. 53. № 4. Р. 1474-1484. DOI: 10.1109/TSP.2005.843746
  17. Li Q., Wang Z. An Improved K-Best Sphere Decoding Architecture for MIMO Systems. Fortieth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA. USA. 2006. Р. 2190-2194. DOI: 10.1109/ACSSC.2006.355157
  18. Razavizadeh, S.M., Vakili T.V., Azmi P. A New Modified Viterbo-Boutros Sphere Decoding Algorithm. Iranian Journal of Science and Technology. Transaction B: Engineering. 2006. V. 30. № B2. Р. 285-290. DOI: 10.22099/IJSTE.2006.869
  19. Albreem M.A.M., Yusof N.M., Hamzah F.N. Simplified sphere detection algorithm for LTE downlink. International Conference on Space Science and Communication (IconSpace). Langkawi. 2015. Р. 418-423. DOI: 10.1109/IconSpace.2015.7283840
  20. Jun X., Diyuan G., Zengye W. Research of Improved Sphere Decoding Algorithm. Chinese Control and Decision Conference (CCDC). Nanchang, China. 2019. Р. 1043-1047. DOI: 10.1109/CCDC.2019.8833103
  21. Tokar M.S. Development of a differential block coding method for application in mobile radio communication systems using MIMO systems. Technology audit and production reserves. 2019. V. 4. № 2(48). P. 28–33.
  22. Tokar M.S. Development of blind frame synchronization for transfer system with differential space-time block coding. Technology audit and production reserves. 2020. V. 1. № 2(51). P. 30–34.
  23. Tokar' M.S. Differencial'nyj metod blokovogo kodirovanija dlja primenenija v sistemah MIMO. Sistemy sinhroniza-cii, formirovanija i obrabotki signalov. 2018. № 1. S. 147-159 (In Russian).
  24. Hochwald B.M., Sweldens W. Differential unitary space-time modulation. IEEE Trans. Commun. 2000. V. 48. № 12. Р. 2041–2052. DOI: 10.1109/26.891215
  25. Preparata F., Shejmos M. Vychislitel'naja geometrija: Vvedenie: Per. s angl. M.: Mir. 1989. 478 s. (In Russian)
Date of receipt: 02.03.2021
Approved after review: 16.03.2021
Accepted for publication: 16.03.2021