350 rub
Journal Radioengineering №4 for 2021 г.
Article in number:
The images complex processing of the visible and infrared ranges
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202104-09
UDC: 621.391
Authors:

A.V. Korennoy¹, A. A. Kozhevnikov², E.A. Yashchenko³

1−3 MESC AF «N.E. Zhukovsky and Y.A. Gagarin Air Force Academy» (Voronezh, Russia)

Abstract:

Statement of the problem. The widespread use of television and thermal imaging systems today has led to the need for the joint (complex) use of visible and infrared images. It is obvious that the sharing of images obtained in different parts of the optical range increases their information value. This approach is most relevant in the presence of natural obstacles (low illumination, weather conditions, lens defocusing, etc.) or special measures (smoke screens, aerosols and other masking effects). In these settings, additional measures are required to improve the quality and informativeness of the images being formed. These measures should be complex, taking into account the properties of images in different ranges. A possible approach to the complex solution of the restoring distorted images of the visible and infrared ranges problem is the Bayesian method of restoring random fields, which involves the priori information about the original images presence.

Purpose. Improvement of quality and information of distorted optical images of visible and infrared ranges based on their complex processing.

Results. For task the problem of complex processing of visible and infrared images, it is proposed to present these images in the form of two-component random fields and use the method of optimal restoring random fields based on the Bayesian approach. In order to improve the quality of distorted images recovery, the principle of micro movements of generated images in the plane of recording devices is used. As a result, expressions for the two-component complex image estimation vector of the visible and infrared ranges and for the correlation error matrix were obtained. A block diagram of two-channel complex recovering implementing a synthesized complexing algorithm is constructed.

To determine the efficiency of the synthesized algorithm, its simulation was carried out. As the original images, real images of the same area of the earth's surface in the visible and infrared ranges were used, which were distorted by a wide-range Gaussian noise field. As a result of statistical modelling, complex estimates of images in the visible and infrared ranges were obtained, which indicate a quite satisfactory quality of distorted images recovery due to microtransferences of the generated images. In addition, in complex processing, specific features of images of one range or another appear on both recovered images.

To quantitative estimation of the algorithm effectiveness for integrating images of different frequency ranges, two indicators were used. The variance of the recovery error is for assessing quality. The entropy of the halftone image is for assessing information content. Comparing these indicators with similar indicators in separate processing, it was concluded of the recovery error variance decrease and of the informativity increase.

Practical significance. The developed algorithm for complex recovering of different frequency ranges images can be used in a twochannel optoelectronic system of visible and infrared ranges to increase the quality and informativity of the generated images.

Pages: 77-88
For citation

Korennoy A.V., Kozhevnikov A.A., Yashchenko E.A. The images complex processing of the visible and infrared ranges. Radiotekhnika. 2021. V. 85. № 4. P. 77−88. DOI: https://doi.org/10.18127/j00338486-202104-09 (In Russian).

References
  1. Patent №2273036 (RF) po Zajavke № 2003125383, opublikovanie 27.03.2006. Bjul. № 9. Patent RF OAO «TKS-Optika». Sposob sozdanija semejstva kompleksirovannyh sistem nabljudenija raspoznavanija i pricelivanija, na osnove semejstva universal'nyh ob’ektivov i kompleksirovannaja sistema dlja ego realizacii. Mel'nikov G.S., Doncov G.A., Popov A.S., Osharin A.A., Serov I.N., Snurnicyna N.B., Arhipova L.N., Gal'pern L.A., Tarabukin V.V., Vasil'ev E.A., Beloborodov V.P., Kozyreva T.A. (In Russian).
  2. Mel'nikov G.S., Klisho N.A., Samkov V.M., Soldatov Ju.I., Pankov Je.D., Korotaev V.V. Metod realizacii rezhima sverhrazreshenija pri kompleksirovanii submillimetrovogo i IK-diapazonov na dvuh diapazonnyh QWIP matricah. Izvestija vuzov. Serija Priborostroenie 9. 2008. 288 s. (In Russian).
  3. Kidrjashkin V.V., Sosulin Ju.G. Avtomaticheskoe sovmeshhenie radiolokacionnogo izobrazhenija s opticheskim izobrazheniem i cifrovoj kartoj mestnosti. Uspehi sovremennoj radiojelektroniki. 2010. № 10. S. 59−71 (In Russian).
  4. Vasilenko G.I., Taratorin A.M. Vosstanovlenie izobrazhenij. M.: Radio i svjaz'. 1986. 304 s. (In Russian).
  5. Korennoj A.V., Kozhevnikov A.A., Jashhenko E.A. Vlijanie dvizhenija registrirujushhego ustrojstva na process formirovanija nepodvizhnogo izobrazhenija v sistemah tehnicheskogo zrenija. Radiotehnika. 2020. № 1. S. 67−73 (In Russian).
  6. Jarbus A.L. Rol' dvizhenija glaz v processe zrenija. M.: Nauka. 1965. 166 s. (In Russian).
  7. Korennoj A.V. Obnaruzhenie, raspoznavanie i opredelenie parametrov obrazov ob’ektov. Metody i algoritmy. Pod red. A.V. Korennogo. M.: Radiotehnika. 2012. 112 s. (In Russian).
  8. Korennoj A.V., Kozhevnikov A.A., Jashhenko E.A. Modelirovanie opticheskih izobrazhenij v infrakrasnom i vidimom diapazonah. Radiotehnika. 2020. № 12. S. 5−12 (In Russian).
  9. Korennoj A.V., Kozhevnikov A.A., Jashhenko E.A. Opredelenie pokazatelej kachestva i informativnosti kompleksnyh radiolokacionnyh izobrazhenij pri mnogochastotnom zondirovanii zemnoj poverhnosti. Radiotehnika. 2018. № 11. S. 28−37 (In Russian).
Date of receipt: 05.03.2021
Approved after review: 18.03.2021
Accepted for publication: 26.03.2021