350 rub
Journal Radioengineering №3 for 2021 г.
Article in number:
Explanation of the choice of the radar sensor structure for the UAV collision avoidance system based on SDR
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202103-11
UDC: 629.7.051.53
Authors:

A.A. Podmarev¹, O.V. Pavlovich², A.A. Maslennikova³

1−3 JSC "V.V. Tikhomirov Professional Equipment Research Studies Institute" (Moscow, Russia)

Abstract:

The most important task of the air traffic is to ensure the safety with an increase in the number of aircraft. Aerial collision with stationary obstacles and oncoming objects including other aircraft represent a significant share of the risk.

The authors suggest to use SDR technologies to create a small-sized radar sensor for a collision avoidance system mounted on UAVs, which will be able to ensure the safety of several UAVs in conditions of limited space and intensive flights of other aircraft. This sensor has the ability to change its configuration by software. A block diagram of the radar sensor for the collision avoidance system has been developed. A computer simulation aimed at determining the range to the target at the specified parameters was performed.

The SDR market is analyzed. 

Printed and multilayer Uda-Yagiare used as antenna elements. The authors obtained a viewing area in the horizontal plane ± 70 degrees and in the vertical plane ± 15 degrees) is formed by an antenna array, consisting of four antenna elements for receiving and four for transmitting. The antenna elements can be integrated into the aircraft body, for example, using additive technologies. A variant of placing a printed antenna array in the UAV body is proposed. The radiation pattern of a printed antenna array is simulated.

Pages: 128-133
For citation

Podmarev A.A., Pavlovich O.V., Maslennikova A.A. Explanation of the choice of the radar sensor structure for the  UAV collision avoidance system basedon SDR. Radiotekhnika. 2021. V. 85. № 3. P. 128−331. DOI:

https://doi.org/10.18127/j00338486-202103-13 (In Russian).

References
  1. Vozdushnyj kodeks Rossijskoj Federacii ot 19.03.1997 № 60-FZ (red. ot 08.06.2020). (In Russian).
  2. Konceptual'nye predlozhenija po integracii bespilotnyh aviacionnyh sistem v vozdushnoe prostranstvo RF. ANO «Centr «AJeRONET». 2018. (In Russian).
  3. Institut Aviacionnogo priborostroenija «Navigator». Sistema preduprezhdenija stolknovenij v vozduhe SPSV (TCAS/ACAS II). URL: https://navigat.ru/products/sistemy-bezopasnosti-poletov/spsv-tcas-acas-ii/ (data obrashhenija 2021-01-27). (In Russian).
  4. Kuprjashkin I.F., Lihachev V.P., Rjazancev L.B. Malogabaritnye funkcional'nye RLS s nepreryvnym chastotno-modu-lirovannym izlucheniem. M.: Radiotehnika. 2020. (In Russian).
  5. Pavlovich O.V., Vicukaev A.V., Car'kova Ju.M. Razrabotka antenny, napechatannoj na 3D-printere s ispol'zovaniem konduktivnyh materialov. V kn.: Radiolokacionnye sistemy special'nogo i grazhdanskogo naznachenija. 2018–2020. Pod red. Ju.I. Belogo. M.: Radiotehnika. 2018. (In Russian).
  6. Pavlovich O.V., Vicukaev A.V., Car'kova Ju.M. Integracija antenny, izgotovlennoj posredstvom AT v korpus LA. V kn.: Radiolokacionnye sistemy special'nogo i grazhdanskogo naznachenija. 2018–2020. Pod red. Ju.I. Belogo. M.: Radiotehnika. 2018. (In Russian).
  7. Habr. Lime SDR - SDR priemoperedatchik za 249$. URL: https://habr.com/ru/post/395191/(data obrashhenija 2021-01-27). (In Russian).
Date of receipt: 19.11.2020
Approved after review: 16.12.2020
Accepted for publication: 03.02.2021
Article

​​​​​​