350 rub
Journal Radioengineering №3 for 2021 г.
Article in number:
State and prospects for the development of antenna systems for spacecraft radio date communication of transmitting information
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202103-09
UDC: 621.396.67
Authors:

E.V. Ovchinnikova¹, S.G. Kondratieva², P.A. Shmachilin³Nguen Dinh To4, E.V. Gadzhiev5, A.O. Perfilova6

1−5 Moscow Aviation Institute (National Research University) (Moscow, Russia)

2,3 Peoples Friendship University of Russia (Moscow, Russia)

5 JC “VNIIEM Corporation” (Moscow, Russia)

6 LLC “Inspider” (Moscow, Russia)

Abstract:

The paper considers the state and prospects for the development of radio data communication of target information, including the ones used in the onboard antenna system. The given radio date are used both in large spacecraft of “Meteor-M” series and in small spacecraft of “Kanopus-V” series.

The applied onboard antennas of meter, decimeter and centimeter ranges as part of the radio date of "Kanopus-V" and "Meteor-M" series spacecraft are considered.

The principles of development and characteristics of the used radio data communication of target information as part of the above spacecraft are described. The centimeter radio date include two transmitters and two antenna feeder devices. This method for the development of the onboard radio data communication of target information allows the information transmission at a speed of 61.44 Mbit/s and 122.88 Mbit/s. The advantages and disadvantages of developing the specified radio date are shown.

The paper analyzes modern requirements for a radio date. At present, the requirements for the radio data communication of target information have been upgraded and made tougher. An improvement in the spatial resolution of modern spacecraft images for remote sensing of the Earth leads to an increase in the amount of information that must be promptly transmitted to ground information centers. It is shown that to develop a high-speed and ultra-high-speed radio date, it is necessary to provide data transmission at a speed of up to 1 Gbit/s. In turn, there are a number of factors limiting the development of a high-speed radio date, which are presented in this paper.

One of the options for developing a high-speed radio date is based on increasing the capacity of satellite radio date:

compression of headers of packets of network and transport layers; multiprotocol encapsulation;

application of multilevel modulation and highly efficient error-correcting coding; providing the regime of adaptive modulation and coding; combination of the used frequency ranges.

In addition to the above methods, which are based on either expanding the used frequency range or increasing the efficiency of using the frequency resource, capacity gain can be achieved by increasing the radio date power. However, this inevitably leads to an increase in the weight and size characteristics and the cost of onboard equipment of the spacecraft, as well it is limited by the international regulatory documents.

The analysis of the used frequency ranges is carried out to develop a high-speed radio date. During the analysis, the choice was made in favor of the centimeter frequency range (8025 ...8400 MHz).

Thus, the trends for the further development of the antenna system of the radio data communication of target information are:

increasing the volume of information transmitted from the spacecraft to ground communication centers; reduction in the mass of radio data communication of target information equipment; reduction of power consumption of radio data communication of target information equipment; cost reduction; increased reliability.

Pages: 86-95
For citation

Ovchinnikova E.V., Kondratieva S.G., Shmachilin P.A., Nguen Dinh To, Gadzhiev E.V., Perfilova A.O. State and prospects for the development of antenna systems for spacecraft radio date communication of transmitting information. Radiotekhnika. 2021. V. 85. № 3. P. 86−95. DOI: https://doi.org/10.18127/j00338486-202103-09 (In Russian).

References
  1. Prigoda B.A., Kokun'ko V.S. Antenny letatel'nyh apparatov. M: Voenizdat. 1964. 120 s. (In Russian).
  2. Bejker R. Vvedenie v teoriju vibroispytanij. FM 26616 ISO 9001. LDS. 1994. 44 s. (In Russian).
  3. Beljakov I.T., Borisov Ju.D. Osnovy kosmicheskoj tehnologii. M.: Mashinostroenie. 1980. 185 s. (In Russian).
  4. Fortesk'ju P., Suajnerda G., Starka D. Razrabotka sistem kosmicheskih apparatov. M.: Al'pina Pablisher. 2015. 765 s. (In Russian).
  5. Belous A.I., Soloduha V.A., Shvedov S.V. Kosmicheskaja jelektronika. V 2-h knigah. Kn. 2. M.: Tehnosfera. 2015. 488 s.  (In Russian).
  6. Knjazev V.K., Sidorov N.A., Kurbakov V.G. i dr. Radiacionnaja stojkost' materialov radiotehnicheskih konstrukcij. M.: Sovetskoe radio. 1976. 568 s. (In Russian).
  7. Milinchuk V.K., Tupikov V.I., Briskman B.A. i dr. Radiacionnaja stojkost' organicheskih materialov: spravochnik.  Pod red. V.K. Milinchuka, V.I. Tupikova. M.: Jenergoatomizdat. 1986. 272 s.  (In Russian).
  8. Bocharov V.S., Generalov A.G., Gadzhiev E.V. Antenna-feeder devices in the development of OJSC ‘NIIEM’, Istra (Moscow region).  23td International Crimean Conference Microwave and Telecommunication Technology, Conference Proceedings. 2013. P. 46–47.
  9. Bocharov V.S., Generalov A.G., Gadzhiev Je.V. Rezul'taty letnyh ispytanij antenno-fidernyh ustrojstv telekomandnoj sistemy KA «Kanopus-V» №1 i Belorusskogo KA i puti usovershenstvovanija ih harakteristik. Radiotehnicheskie i telekommunikacionnye sistemy. 2014. № 4(16). S. 5–12 (In Russian).
  10. Generalov A.G., Gadzhiev Je.V. Bortovaja antenna dlja postroenija sistem svjazi i mezhsputnikovoj svjazi. Tezisy dokladov konferencii «Iosif'janovskie chtenija – 2017». Istra: AO «NIIJeM». 2017. S. 262–265 (In Russian).
  11. Bocharov V.S., Generalov A.G., Gadzhiev Je.V. Antennaja sistema dlja bortovoj apparatury KOSPAS–SARSAT. Radiotehnika. 2018.  № 8. S. 204–211. DOI 10.18127/j00338486-201808-38 (In Russian).
  12. Bocharov V.S., Generalov A.G., Gadzhiev Je.V. Antennaja sistema kosmicheskogo apparata «Ionosfera». Voprosy jelektromehaniki. Trudy VNIIJeM. 2012. T. 131. № 6. S. 11–14. (In Russian).
  13. Gutkin L.S. Proektirovanie radiosistem i radioustrojstv. M.: Radio i svjaz'. 1986. 288 s. (In Russian).
  14. Vladimirov A.V., Salihov R.S., Senik N.A., Zolotoj S.A. Kosmicheskaja sistema operativnogo monitoringa tehnogennyh i prirodnyh chrezvychajnyh situacij na baze KK «Kanopus-V» i Belorusskogo kosmicheskogo apparata. Voprosy jelektromehaniki. Trudy NPP VNIIJeM. 2008. T. 105. S. 49–57 (In Russian).
  15. Kosmicheskij kompleks operativnogo monitoringa tehnogennyh i prirodnyh chrezvychajnyh situacij «Kanopus-V» s kosmicheskim apparatom «Kanopus-V» № 1. M.: FGUP «NPP VNIIJeM». 2011. 110 s. (In Russian).
  16. Makridenko L.A., Volkov S.N., Gorbunov A.V., Salihov R.S., Hodnenko V.P. KA «Kanopus-V» № 1 – pervyj rossijskij malyj kosmicheskij apparat vysokodetal'nogo distancionnogo zondirovanija zemli novogo pokolenija. Voprosy jelektromehaniki. Trudy VNIIJeM. 2017.  T. 156. S. 2–11 (In Russian).
  17. Nauchno-issledovatel'skij kosmicheskij apparat «Lomonosov». M.: AO «Korporacija «VNIIJeM». 2015. 138 s. (In Russian).
  18. Kosmicheskij kompleks operativnogo monitoringa tehnogennyh i prirodnyh chrezvychajnyh situacij «Kanopus-V» s kosmicheskim apparatom «Kanopus-V-IK». M.: AO «Korporacija «VNIIJeM». 2017. 130 s. (In Russian).
  19. Kosmicheskij kompleks gidrometeorologicheskogo i okeanograficheskogo obespechenija «Meteor-3M» s kosmicheskim apparatom «Meteor-M» №1: spravochnye materialy. M.: FGUP «NPP VNIIJeM». 2008. 144 s. (In Russian).
  20. Kosmicheskij kompleks gidrometeorologicheskogo i okeanograficheskogo obespechenija «Meteor-3M» s kosmicheskim apparatom «Meteor-M» № 1. M.: OAO «Korporacija «VNIIJeM». 2014. 158 s. (In Russian).
  21. Kosmicheskij kompleks gidrometeorologicheskogo i okeanograficheskogo obespechenija «Meteor-3M» s kosmicheskim apparatom «Meteor-M» № 2–1. M.: AO «Korporacija «VNIIJeM». 2017. 156 s. (In Russian).
  22. Bocharov V.S., Generalov A.G., Gadzhiev Je.V. Issledovanie vlijanija korpusa kosmicheskogo apparata na harakteristiki napravlennosti bortovyh antenn Materialy konferencii «Iosif'janovskie chtenija - 2015». 2015. S. 61–63 (In Russian).
  23. Bahtin A.A., Omel'janchuk E.V., Semenova A.Ju. Analiz sovremennyh vozmozhnostej organizacii sverhvysokoskorostnyh sputnikovyh radiolinij. Trudy MAI. 2017. № 96 (In Russian).
  24. Bekrenev O.V.; Goncharov A.K., Martynov S.I. Antennye sistemy priemnyh kompleksov dlja osnashhenija priemnyh stancij ETRIS. Materialy konferencii «Iosif'janovskie chtenija - 2017». 2017. S. 240–241 (In Russian).
  25. Generalov A.G., Gadzhiev Je.V. Sostojanie i perspektivy razvitija bortovyh antenno-fidernyh ustrojstv radiolinii peredachi celevoj informacii. Radiotehnicheskie i telekommunikacionnye sistemy. 2018. № 2(30). S. 44–52 (In Russian).
  26. Sedunov D.P., Privalov D.D. Povyshenie propusknoj sposobnosti sputnikovyh radiolinij. Problemy nauki. 2016. № 6(7). S. 9-11 (In Russian).
  27. Bahtin A.A., Omel'janchuk E.V., Semenova A.Ju. Analiz tehnicheskih harakteristik, ogranichivajushhih propusknuju sposobnost' radiolinii Kosmos-Zemlja. Sb. trudov VIII Vseross. konf. «Radiolokacija i radiosvjaz'». M. 2014. S. 145-149 (In Russian).
Date of receipt: 14.12.2020
Approved after review: 15.01.2021
Accepted for publication: 03.02.2021