350 rub
Journal Radioengineering №3 for 2021 г.
Article in number:
Designing of parachuted jamming systems to provide protection of high-speed objects
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202103-05
UDC: 621.396.721+5333.666
Authors:

G.V. Ershov, B.V. Krylov, P.V. Blagovisny

JSC «Central Radio-Research Institute named after academician A.I. Berg»

Abstract:

The purpose of this paper consists in designing of jamming sub-system which after incorporating into a spatial-distributed system would be capable to mask high-speed objects with required effectiveness from their finding by a given radar.

There are three main factors that influence much on the effectiveness.

Factor of pulse duration. Pulse duration of interfering signal must be more or comparable with probe pulse radiated by a radar. Such interfering signal will be processed by a radar as desired signal.

Factor of direction. Interfering signal must be radiated simultaneously from different directions by many parachuted jamming subsystems (some tens or hundreds) moving in a plane approximately perpendicular to direction on the radar, so that angular positions of jamming sub-systems were different for a radar. Thus, noise addition in a radar will be disrupted.

Factor of time. Suppression of a radar must be provided during a required period of time. Therefore, parachute must provide a required velocity of descending for a jamming sub-system and at the same time must be compact when folded.

It is suggested to put jamming sub-system in a cylinder at one butt end of which is placed an antenna (flat bilifar helix antenna (Archimedian spiral)) and connectors to provide contact of jamming sub-system with external control devices and other jamming subsystems. The whole surface of the other butt end of the cylinder is deepened to place a parachute and also contains connectors to provide contact of jamming sub-system with external control devices. Inside the cylinder are placed stock-produced primary and secondary power supplies and also generator module that meets requirements of minimal mass and outer dimensions. Existing technologies allow to design jamming sub-system with mass about 1 kg in a volume about 1.5 l.

Results obtained in this paper confirm the possibility of placing inside existing delivery vehicles parachuted jamming sub-systems in a quantity sufficient to deploy spatial-distributed system capable to protect high-speed objects.

Choosing of optimal radius of a parachute to provide staying of a parachuted jamming sub-system at a given altitude range for a required period of time is left for further investigations.

Pages: 49-57
For citation

Ershov G.V., Krylov B.V., Blagovisny P.V. Designing of parachuted jamming systems to provide protection of highspeed objects. Radiotekhnika. 2021. V. 85. № 3. P. 49−57. DOI: https://doi.org/10.18127/j00338486-202103-05 (In Russian)

References
  1. Qiao X., Tao J., Xiaohui Q., Min Z., Shuqing Y., Qunxing Z. Anti-millimeter wave polarization agile active jamming. Int. Conf. Microwave and Millimeter Wave Technology. 2007. Nanjing. China. P. 1−4.
  2. Xu J., Bai B., Dong C., Dong Y., Zhu Y., Zhao G. Evaluations of plasma stealth effectiveness based on the probability of radar detection. IEEE Trans. Plasma Sci. 2017. V. 45. № 6. P. 938−944.
  3. Yaug J., Wang X., Wu X., Dong X. Simulation analysis of absorptive chaff cloud jamming performance on radar wave. Advances in engineering research. V. 166. 3-rd international conference on automation, mechanical control and computational engineering (AMCCE 2018). 2018. Bangkok. Thailand. P. 328−333.
  4. Zhang M., Zhang X., Song W., Kong W., Zhang Z. Mixed jamming suppression algorithm for phased array radar. The journal of engineering. IET international radar conference (IRC 2018). Toulon. France. 2019. V. 2019. Is. 20. P. 7179−7184.
  5. Ershov G.V., Korobkov YU.YU., Murlaga A.R. Razrabotka kompleksa obnaruzheniya i protivodejstviya bespilotnym letatel'nym apparatam. Radiotekhnika. 2019. T. 83. № 11(17). S. 51–58.
  6. Ershov G.V., Lihoedenko K.P., Korobkov YU.YU., Murlaga A.R. Principy proektirovaniya prostranstvenno-raspredelennyh sistem zashchity vysokoskorostnyh ob"ektov. Radiotekhnika. 2020. T. 84. № 7(13). S. 53–61.
  7. Patent № RU2403586, G01S7/38, 10.11.2010. Ustrojstvo radiolokacionnoj zashchity zony poverhnosti ot protivoradiolokacionnyh sredstv v zadannyj otrezok vremeni. K.A. Antonov, O.F. Andryushin, G.M. Boldyrev, A.SH. SHmorgun, A.S. Malyshkin, YU.M. Kiselev.
  8. Patent № EP1676339, G01S7/38, 07.05.2006. Parachuted radar decoy. G. Weisbrod. 
  9. Zayavka na izobretenie № 2020123391 ot 15.07.2020. Sposob formirovaniya prostranstvenno-raspredelennoj sistemy maskirovki vysokoskorostnogo ob"ekta. G.V. Ershov, A.R. Murlaga, V.M. Pahomov. Reshenie o vydache patenta ot 17.11.2020.
  10. Garmash S.V., Kishchinskij A.A., Markelova T.A., Radchenko A.V. Monolitnye integral'nye usiliteli S-H-Ku-diapazona s vyhodnoj moshchnost'yu 1,5 Vt. SVCH-elektronika. 2019. № 1. S. 46−48.
  11. Kishchinskij A.A. Tverdotel'nye usiliteli moshchnosti SVCH-diapazona so sverhoktavnoj polosoj. SVCH-elektronika. 2019. № 1. S. 20−23.
  12. Zahvataev S., Dmitriev V., Ujmanov S. SVCH-usilitel' moshchnosti S-diapazona na GaN HEMT tranzistorah firmy SUMI-TOMO ELECTRIC. SVCH elektronika. 2019. № 3. S. 30−33.
  13. Astahov P.N., Kalinin A.A., Krylov B.V. Issledovanie effektivnosti primeneniya almaznyh teplootvodov v moshchnyh GaN modulyah SVCH. Vestnik RAEN (v pechati).
  14. Sazonov D.M. Antenny i ustrojstva SVCH: Ucheb. dlya radiotekhnich. spec. vuzov. M.: Vysshaya shkola. 1988. 432 s.
  15. YUrcev O.A., Runov A.V., Kazarin A.N. Spiral'nye antenny. M.: Sovetskoe radio. 1974. 224 s.
  16. Ershov G.V., Lihoedenko K.P., Murlaga A.R. Opredelenie tochki sbrosa parashyutiruemyh sredstv zashchity vysokoskorostnyh ob’ektov v usloviyah dozhdya. Radiotekhnika. 2021. T. 85. № 2. S. 5−16.
Date of receipt: 12.01.2021
Approved after review: 26.01.2021
Accepted for publication: 03.02.2021