350 rub
Journal Radioengineering №2 for 2021 г.
Article in number:
The self generation of approximately equal in power level oscillations at the fundamental frequency and its even and odd harmonics
DOI: 10.18127/j00338486-202102-16
UDC: 621.373.5
Authors:

A.V. Baranov

JSC “SPE “SALUT” (Nizhny Novgorod, Russia)

Abstract:

In the literature, various methods of forming a grid of multiple frequencies are known. Unfortunately, they are ineffective, since the power of harmonics is much less than the fundamental oscillation power. The most effective way to generate a multiple frequency grid is using multi-frequency generation modes in oscillators.

Aim. For microwave oscillators, the task is to investigate a new mode of simultaneous generation of oscillations at the fundamental frequency and its even and odd harmonics.

Based on the study of a generalized model of harmonic oscillator, the conditions for obtaining oscillations at the fundamental frequency and its even and odd harmonics are determined. A new microwave harmonic oscillator has been studied, in which the multifrequency generation mode is performed using different types of equivalent three-point circuits. Thus, in the proposed oscillator, three-point capacitive circuits are implemented on the fundamental frequency and its odd harmonic, and an inductive three-point circuit is implemented on the even harmonic.

The necessary conditions for the implementation of the selected three-point circuits in harmonics oscillator on a microwave transistor described by wave [S]-parameters are established.

It is experimentally confirmed that the levels of the emitted harmonics can be the same and even slightly higher than the output power of the fundamental oscillation.

In comparison with the known methods of multiple frequencies forming in the microwave harmonics oscillator, the advantage of using the simultaneous generation mode of oscillations at the fundamental frequency and its even and odd harmonics that are similar in power level is proved.

Pages: 113-122
For citation

Baranov A.V. The self generation of approximately equal in power level oscillations at the fundamental frequency and its even and odd harmonics. Radiotekhnika. 2021. V. 85. № 2. P. 113−122. DOI: 10.18127/j00338486-202102-016 (In Russian).

References
  1. Baranov A.V., Morugin S.L. Tranzistornye usiliteli-ogranichiteli moshchnosti garmoniche-skih SVCH-kolebanij. M.: Goryachaya liniya – Telekom. 2019. 332 s. (In Russian).
  2. A.s. № SU 1054864 A (SSSR). Avtogenerator garmoniki SVCH / V.A. Malyshev, S.P. Brovchenko 1983 (In Russian).
  3. Lyubchenko V.E., Kalinin V.I., Kotov V.D., Radchenko D.E., Telegin S.A., YUnevich E.O. Genera-ciya garmonik v skheme mikropoloskovoj antenny-generatora, integrirovannoj s volnovodom, vstroennym v dielektricheskuyu podlozhku. ZHurnal Radioelektroniki. 2016.  № 2 (In Russian).
  4. HMC530LP5/530LPE MMIC VCO w/Half frequency output & divide–by–4 9.5 – 10.8 GHz, VCOs & PLOs – SMT [Elektronnyj resurs]. Hittite microwave corporation 2010. Rezhim dostupa: http:. www.hittite.com).
  5. Yabuki H., Sagawa M., Makimoto M. New type of push-push oscipliers for the frequency synthe-sizer. IEEE MTT-S Int. Microwave Symp. Dig. 1992. P. 1085–1088.
  6. Grebennikov A.V., Nikiforov V.V. Oktavnye avtogeneratory UVCH-diapazona na MDP-tranzistorah. Poluprovodnikovaya elektronika v tekhnike svyazi. Pod red. I.F. Nikolaevskogo. M.: Radio i Svyaz'. 1986. Vyp. 26. S. 188–194 (In Russian).
  7. Utkin G.M. Odnovremennye kolebaniya dvuh chastot v avtogeneratore s avtosmeshcheniem. Radiotekhnika. 1957. T. 12. № 4. S. 64– 66 (In Russian).
  8. Kabanov D.A. Obobshchennyj podhod k issledovaniyu avtogeneratorov. Radiotekhnika i elek-tronika. 1974. T. 19. № 8. S. 1690–1697 (In Russian).
  9. Patent na izobretenie № 2319284 (RF). Mnogochastotnyj avtogenerator radiochastotnogo diapazona. D.V. Vancev, V.M. Geller,  V.A. Hrustalev. 2008 (In Russian).
  10. Baranov A.V. Blizkie po urovnyu moshchnosti odnovremennye kolebaniya osnovnoj chastoty i odnoj ili dvuh ee garmonik v SVCHavtogeneratorah. Elektronnaya tekhnika. Ser. 1. SVCH-tekhnika. 2019. Vyp. 3(542). S. 88–99 (In Russian).
  11. Rohde U.L., Poddar A.K., Böck G. The design of modern microwave oscillators for wireless ap-plications. New Jersey, USA: John Wiley & Sons. Inc. 2005. 543 p.
  12. Grebennikov A. RF and microwave transistor oscillator design. Chichester, England: John Wiley & Sons Ltd. 2007. 441 p.
  13. Patent na izobretenie № 2727782 (RF). Perestraivaemyj avtogenerator garmonik. A.V. Baranov. 2020 (In Russian).
  14. Glazov G.N., Gorevoj A.V. Metody izmerenij na SVCH. T. 2. Kn. 1. Upravlyaemye generatory SVCH.  Tomsk: ZAO «Izdatel'stvo «Krasnoe znamya». 2015. 496 s. (In Russian).
  15. Kurokawa K. Some basic characteristics of broadband negative resistance oscillators circuits. The Bell System Technical Journal. 1969. July–august. P. 1937–1955.
  16. Chang C.-R., Steer M.B., Martin S., Reese E. Computer-aided analysis of free-running micro-wave oscillators. IEEE Trans. on Microwave Theory and Techniques. 1991. V. MTT-39. № 10. P. 1735–1745.
  17. Baranov A.V., Kozikov A.L. Vzaimodopolnyayushchie priemy proektirovaniya trekhtochechnyh SVCH–avtogeneratorov. Elektronnaya tekhnika. Ser. 1. SVCH-tekhnika. 2018. Vyp. 3(538). S. 75–82 (In Russian).
  18. Razevig V.D., Potapov YU.V., Kurushin A.A. Proektirovanie SVCH-ustrojstv s pomoshch'yu Microwave Office. Pod red. V.D. Razeviga. M.: Solon-Press. 2003. 496 s. (In Russian).
Date of receipt: 22.09.2020
Approved after review: 20.10.2020
Accepted for publication: 15.01.2021