350 rub
Journal Radioengineering №11 for 2021 г.
Article in number:
Proposals for increasing the immunity of radio systems control channels
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202111-15
UDC: 621.391
Authors:

S.V. Dvornikov1, E.A. Popov2, A.F. Kryachko3, S.S. Dvornikov4, S.V. Tomashevich5

1,3 St. Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)

1,4 Military Academy of Communications (St. Petersburg, Russia)

2 Peter The Great St. Petersburg Polytechnic University (Saint-Petersburg, Russia)

Abstract:

Currently, robotic systems (RBTS) are used in various fields of science and technology. Traditionally, for remote control of RBTS via a wireless channel, signals with frequency modulation (FM signals) are used, which make it possible to synthesize fairly simple and reliable devices for their implementation [1]. But it is the use of a radio channel that makes RBTS vulnerable to various kinds of interference, among which the most dangerous are structural interference [2], which are closest to useful signals. A lot of works are devoted to the issues of combating structural interference, in which the issues of detecting not only the very fact of imitation imitation are thoroughly worked out, but also original technical solutions are presented to compensate for the consequences of the destructive effects of interference. However, as the practice of RBTS application shows, it is important not only to identify the very fact of the presence of third-party signals in radio channels, but also to automatically correct the errors caused by them without reducing the reliability of the decision.

Target. To propose a technical solution for a method for compensating for structural interference in RBTS control channels using FM signals, and to provide a scientific and methodological justification for the legality of its application.

Results. Proposals for the implementation of a technical solution aimed at compensating for structural interference to FM signals in the control channels of robotic devices are presented.

Practical significance. The results obtained are consistent with the requirements for the reliability of information transmitted over radio channels. The authors associate a further direction of research with the use of signals synthesized in nonharmonic bases in control channels [21].

Pages: 95-106
For citation

Dvornikov S.V., Popov E.A., Kryachko A.F., Dvornikov S.S., Tomashevich S.V. Proposals for increasing the immunity of radio systems control channels. Radiotekhnika. 2021. V. 85. № 11. P. 95−106. DOI: https://doi.org/10.18127/j00338486-202111-15 (In Russian)

References
  1. Zhuk A.P., Gavrishev A.A., Osipov D.L. K voprosu o razrabotke zashhishhennogo ustrojstva upravlenija robototehnicheskim kompleksom posredstvom besprovodnogo kanala svjazi. T-Comm: Telekommunikacii i transport. 2016. T. 10. № 12. S. 4−9 (In Russian).
  2. Sovremennaja radiojelektronnaja bor'ba. Voprosy metodologii. Pod red. V.G. Radzievskogo. M.: Radiotehnika. 2006. 424 s. (In Russian).
  3. Oroshhuk I.M. Ocenka imitoustojchivosti radiokanala s zamiranijami pri ispol'zovanii signalov s chastotnoj mani-puljaciej. Radiotehnika. 2004. № 11. S. 12−18 (In Russian).
  4. Dvornikov S.V., Dvornikov S.S., Ivanov R.V. i dr. Zashhita ot strukturnyh pomeh radiokanalov s chastotnoj manipulja-ciej. Informacionnye tehnologii. 2017. T. 23. № 3. S. 193−198 (In Russian).
  5. Patent na izobretenie RU 2257009 C2, 20.07.2005. Sposob zashhity ot iskusstvennyh radiopomeh (varianty).. Oro-shhuk I.M. Zajavka № 2003114566/09 ot 15.05.2003 (In Russian).
  6. Dvornikov S.V. Metodika ocenki imitoustojchivosti kanalov upravlenija robotizirovannyh ustrojstv. Radiopromyshlennost'. 2016. № 2.  S. 64−69 (In Russian).
  7. Manohin A.E., Nifontov Ju.A. Adaptivnaja kompensacija pomeh pri ih vzaimnoj nekorrelirovannosti v kanalah. Radiotehnika. 2013.  № 2. S. 18−22 (In Russian).
  8. Dvornikov S.V., Popov E.A., Ivanov R.V. Zashhita kanalov upravlenija robototehnikoj. Radiotehnika. 2018. № 12. S. 62−68 (In Russian).
  9. Pahotin V.A. Sposoby kompensacii uzkopolosnyh pomeh, osnovannye na simmetrii spektrov poleznyh signalov. Pribory i tehnika jeksperimenta. 2008. № 1. S. 72−77 (In Russian).
  10. Dvornikov S.V., Duhovnickij O.G. Ocenka pomehozashhishhennosti professional'nogo radionavigacionnogo oborudova-nija sistemy GLONASS. Informacija i kosmos. 2015. № 4. S. 73−77 (In Russian).
  11. L'vov A.V., Kabaev D.V. Osobennosti prostranstvennoj kompensacii pomeh v DKMV radiokanale maloj protjazhenno-sti. REDS: Telekommunikacionnye ustrojstva i sistemy. 2016. T. 6. № 1. S. 93−97 (In Russian).
  12. Dvornikov S.V., Dombrovskij Ja.A., Semisoshenko M.A. i dr. Ocenka pomehozashhishhennosti linij radiosvjazi s medlen-noj psevdosluchajnoj perestrojkoj rabochej chastoty. Informacija i kosmos. 2016. № 4. S. 11−14 (In Russian).
  13. Patent na izobretenie RU 2618213 C, 03.05.2017. Sposob obnaruzhenija pomeh v radiokanalah. Gulidov A.A. i dr. Zajavka  № 2016105677 ot 18.02.2016 (In Russian).
  14. Podgajskij Ju.P., Soskunova I.A. Ocenka jeffektivnosti algoritma adaptacii, osnovannogo na kriterii maksimuma pravdopodobija. Gidroakustika. 2014. № 20 (2). S. 30−38 (In Russian).
  15. Zhurakovskij V.N., Logvinenko A.S. Opredelenie parametrov doplerovskogo spektra signala, otrazhennogo ot celi i shirokopolosnoj pomehi, metodom maksimal'nogo pravdopodobija. Radiotehnika. 2017. № 11. S. 78−86 (In Russian).
  16. Oroshhuk I.M. Metod informacionnoj fil'tracii kanalov s zamiranijami ot imitacionnyh pomeh pri ispol'zovanii chastotnoj manipuljacii. Zhurnal radiojelektroniki. 2003. № 5. S. 4 (In Russian).
  17. Ostrovskij D.B. O sopostavlenii statisticheskih harakteristik raspredelenij Gaussa, Rjeleja i Rajsa, primenjaemyh v zadachah gidroakustiki. Gidroakustika. 2012. № 16. S. 86−89 (In Russian).
  18. Jakovleva T.V. Uslovija primenimosti statisticheskoj modeli Rajsa i raschet parametrov Rajsovskogo signala metodom maksimuma pravdopodobija. Komp'juternye issledovanija i modelirovanie. 2014. T. 6. № 1. S. 13−25 (In Russian).
  19. Panov M.E. Approksimacija funkcii oshibki. Mashinnoe obuchenie i analiz dannyh. 2011. T. 1. № 2. S. 198−202 (In Russian).
  20. Hajrullin R.Z., Kornev A.S., Kostoglotov A.A. i dr. Matematicheskoe modelirovanie funkcij oshibok prinjatija reshe-nija pri dopuskovom kontrole rabotosposobnosti izmeritel'noj tehniki. Metrologija. 2020. № 3. S. 3−15 (In Russian).
  21. Agievich S.N., Dvornikov S.V., Gusel'nikov A.S. Opisanie signalov v bazisah funkcij splajn-Vilenkina−Kristensona. Kontrol'. Diagnostika. 2009. № 3. S. 52−57 (In Russian).
Date of receipt: 04.10.2021
Approved after review: 19.10.2021
Accepted for publication: 28.10.2021