350 rub
Journal Radioengineering №11 for 2021 г.
Article in number:
Multibeam antenna with Luneberg lens
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202111-10
UDC: 621.396.677
Authors:

D.E. Gubarev1, P.A. Stashok2, Yu.V. Yukhanov3

1,2 JSC «Taganrog scientific research Institute of communication» (Taganrog, Rostov Region, Russia)

3 Southern Federal University (Taganrog, Rostov Region, Russia)

Abstract:

To solve the problems of simultaneous viewing of space in a wide sector of angles, multipath antenna devices based on lens antennas with a conformal aperture are used. An example of such lenses are wide-angle Luneberg lenses with a modified profile of a dielectric lens with a rounded edge.

Multipath antennas based on Luneberg lenses are widely used in communication, location and navigation. A significant number of works are devoted to their research, including monographs, textbooks, articles, dissertations. However, there is very little description of the parameters and design in the millimeter wavelength range of this type of wide-angle antennas in the modern literature, and information about an MLA based on a Luneberg lens with such dimensions and frequency range has not been found at all. Therefore, the topic of this article is relevant. The object of research in this work is a model of a multipath antenna based on a Luneberg lens developed with co-authors at the JSC TNIIS enterprise.

The purpose of the work is to describe the design of an MLA based on a Luneberg lens developed at the JSC TNIIS enterprise. As well as a description of the parameters of such an MLA and obtaining experimental radiation patterns at four frequencies. This study was conducted as part of a research work called «Lens» at the JSC TNIIS enterprise related to the need to find ways to improve the accuracy of radio direction finders with Luneberg lenses. The task was to develop a receiving antenna based on an LLB with a wideangle non-mechanical scanning of space in the azimuthal plane with an operating frequency range of 17.5−40 GHz. Since the requirements are imposed on the shape of the bottom only in the azimuthal plane, the antenna is implemented on the basis of a modified cylindrical LLB, the design of which was chosen for reasons of ease of implementation in production, as well as for weight and size and strength characteristics.

Pages: 60-67
For citation

Gubarev D.E., Stashok P.A., Yukhanov Yu.V. Multibeam antenna with Luneberg lens. Radioengineering. 2021. V. 86. № 11. P. 60−67. DOI: https://doi.org/10.18127/j00338486-202111-10 (in Russian)

References
  1. Ashikhmin A.V., Negrobov V.V., Pasternak Yu.G., Fedorov S.M. Issledovanie konstruktsii sverkhshirokopolosnykh izluchayushchikh struktur na osnove ploskoi linzy Lyuneberga. Radiotekhnika. 2012. № 5. S. 14−17. (in Russian)
  2. Konstruktsii antenn na osnove linzy Lyuneburga. 2018. URL: http://farragsat.meximas.com/homearab.html. (in Russian)
  3. Korotkov A.N., Shabunin S.N., Chechetkin V.A. The cylindrical Luneburg lens discretization influence on its radiation parameters. IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). 2017. S. 394−398.
  4. Luneburg R.K. The mathematical theory of optics. Providence, RI: Brown Univ. Press., 1944. 478 p.
  5. Proektirovanie FAR. Uchebnoe posobie. Pod red. D.N. Voskresenskogo. Izd. 3-e. M.: Radiotekhnika. 2003. (in Russian)
  6. Vendik O.G., Parnes M.D. Antenny elektricheskim skanirovaniem: Ucheb. posobie.. Pod red. L.D. Bakhrakha. M.: Sain. Press. 2002. 232 s. (in Russian)
  7. Bobreshov A.M., Uskov G.K., Kretov P.A., Lysenko N.A., Sbitnev N.S. Mnogoluchevaya TEM-rupornaya antenna s formirovaniem napravleniya linzoi Lyuneberga. FGBOU VO «VGU». Voronezh. 2018. (in Russian)
  8. Kuzikov A.A., Orekhov R.S., Salomatov Yu.P., Sugak M.I. Issledovanie pechatnoi tsilindricheskoi linzy Lyuneberga. Elektronika i mikroelektronika SVCh. 2018. № 1. P. 426−430. (in Russian)
  9. Dyachenko P.N. Gradientnaya fotonno-kvazikristallicheskaya linza Lyuneberga. Sb. dokladov Molodezhnoi nauchnoi shkoly po nanofotonike (30 iyunya 2012 g.) 20-go Mezhdunar. kongressa Nanostructures: Physics and Technology. (in Russian)
  10. Akhiyarov V.V., Kaloshin V.A., Nikitin E.A. Issledovanie shirokopolosnykh planarnykh linz Lyuneburga. Zhurnal Radioelektroniki. 2014. № 1. (in Russian)
  11. Aslambekov V.V., Gorin A.M., Grinko E.A. Mnogoluchevaya linzovaya antenna s ploskoi zashchitnoi diafragmoi. Voprosy spetsialnoi radioelektroniki. Ser. OVR. 2015. № 1. S. 64−69. (in Russian)
  12. Park Y., Wiesbeck W., Fellow. Angular Independency of a Parallel-Plate Luneburg Lens with Hexagonal Lattice and Circular Metal Posts. IEEE. 2002.
  13. Wu X., Laurin J-J. Fan-Beam Millimeter-Wave Antenna Design Based on the Cylindrical Luneberg Lens. IEEE. 2007.
  14. Fuchs B., Le Coq L., Lafond O. Design Optimization of Multishell Luneburg Lenses. IEEE Transactions on antennas and propagation. 2014. V. 55. № 2.
  15. Garcia-Ortiz C.E., Cortes R., Gómez-Correa J.E., Pisano E., Fiutowski J., Garcia-Ortiz D.A., Ruiz-Cortes V., Rubahn H.-G., Coello V. Plasmonic metasurface Luneburg lens. IEEE. 2019.
  16. Dmitriev I.S., Ilin M.Yu. Raschet maksimalnoi veroyatnosti anomalnykh oshibok azimutalnogo pelengatora s koltsevoi antennoi reshetkoi. Antenny. 2019. № 3. (in Russian)
  17. Fedorov S.M. Sverkhshirokopolosnye linzovye antenny s kommutatsionnym skanirovaniem v azimutalnoi ploskosti. Avtoreferat dissertatsii k.t.n. (05.12.07). Voronezh: VGU. 2013. (in Russian)
  18. Bakharev S.I., Volman V.I.,. Lib Yu.N i dr. Spravochnik po raschetu i konstruirovaniyu SVCh poloskovykh ustroistv. Pod red. V.I. Volmana. M.: Radio i svyaz. 1982. 328 s. (in Russian)
  19. Katalog SVCh Elektroniki. Kursk: SKARD-Elektroniks. 2011. 73 s. (in Russian)
  20. Gubarev D.E., Andrianov A.V., Zikii A.N., Pustovalov A.I. Eksperimentalnoe issledovanie priemnika pelengovaniya pryamogo usileniya. Radiotekhnika. 2020. T. 84. № 11(22). S. 50−54. (in Russian)
  21. Gubarev D.E., Andrianov A.V., Zikii A.N., Shakunov S.A. Eksperimentalnoe issledovanie priemnika pelengovaniya. Sb. nauchnykh statei «Problemy sovremennoi sistemotekhniki». Ministerstvo obrazovaniya i nauki RF. Yuzhnyi federalnyi universitet. Institut radiotekhnicheskikh sistem i upravleniya. Taganrog. 2019. S. 5−9. (in Russian)
  22. Khansen R.S. Skaniruyushchie antennye sistemy SVCh: Per. s angl.. Pod red. G.T. Markova i A.F. Chaplina. M: Sovetskoe radio. 1966. T. 1. (in Russian)
  23. Sazonov D.M. Antenny i ustroistva SVCh: Uchebnik. M.: Vysshaya shkola. 1988. 432 s. (in Russian)
  24. Surikov V.V. i dr. MLAR dlya sistem radiotekhnicheskogo monitoringa. Nelineinyi mir. 2014. № 5. (in Russian)
  25. By Ollie Holt. Technology Survey a Sampling of RWRs and ESM Systems. Journal Electronic Defense. June 2015. P. 39−46.
  26. Volakis J.L. Antenna engineering handbook. McGraw Hill. 2007. 1755 p.
Date of receipt: 06.09.2021
Approved after review: 27.09.2021
Accepted for publication: 25.10.2021