350 rub
Journal Radioengineering №9 for 2020 г.
Article in number:
Optimization of multistatic antenna system of subsurface radar
Type of article: scientific article
DOI: 10.18127/j00338486-202009(17)-02
UDC: 621.396.962
Authors:

V.V. Razevig Ph.D. (Eng.), Senior Research Scientist, 

Bauman Moscow State Technical University

E-mail: vrazevig@rslab.ru 

A.S. Bugaev Dr.Sc. (Phys.-Math.), Professor, Academician of RAS, Head of Sub-faculty,  Moscow Institute of Physics and Technology (Dolgoprudnyi, Moscow region)

E-mail bugaev@cplire.ru

A.V. Zhuravlev Ph.D. (Phys.-Math.), Leading Research Scientist, 

Bauman Moscow State Technical University

E-mail: azhuravlev@rslab.ru

A. Kizilay Ph.D., Professor, Head of Electromagnetic Fields and Microwave Techniques Division, 

Electronics and Communications Engineering Department, Yildiz Technical University (İstanbul, Turkey) E-mail: akizilay@yildiz.edu.tr

Abstract:

In subsurface radar, the monostatic principle of registration of radar data is successfully applied, in which the transceiver module of the radar moves with a certain step along the flat surface of the object being examined and measures the amplitude and phase of the field at different frequencies. The module can be moved either by the operator or using a two-dimensional scanner.

A significant disadvantage of a radar with a scanning transceiver module is its low performance. To increase it, various antenna arrays can be used: either linear antenna arrays, scanning along the perpendicular axis, or fixed two-dimensional antenna arrays. To ensure the required quality of the received microwave images, the space between adjacent elements in the antenna array should not exceed a quarter of the wavelength of the sounding signal, therefore, with a wavelength of several centimeters, typical for the subsurface radars under consideration, the number of elements in the antenna array turns out to be quite large, which significantly increases the cost of the radar.

The problem of reducing the number of elements in the antenna system of a subsurface radar can be solved by using a multistatic method, where sparse transmitting and receiving antenna arrays operating on the MIMO (Multiple Input − Multiple Output) principle are used. The multistatic principle of an antenna system is that when a signal is emitted by each transmitting element, the reflected signal is recorded not by a paired receiving element, as in monostatic radar, but by all receiving elements. Thus, the number of independent received field samples is equal to the product of the number of transmitting elements by the number of receiving elements. This raises the question of their optimal positioning.

This paper proposes a method for designing multistatic antenna systems of subsurface radars. The method consists in obtaining the optimal parameters of the transmitting and receiving antenna arrays with an equidistant arrangement of elements by solving the optimization problem of minimizing the objective function, which characterizes the quality of the microwave image of a set of point objects uniformly distributed within the surveyed area.

Several variants of the objective function are considered: 

1) characterizing the degree of focusing of the microwave image of a set of point objects;  2) characterizing the uniformity of the microwave image of a set of point objects;  3) a combination of the first and second variants with different weights. 

It is shown that the best results are obtained using the first variant of the objective function. It is also shown that the proposed approach provides higher quality of microwave images than the existing approach of equivalent virtual elements.

Pages: 26-39
For citation

Razevig V.V., Bugaev A.S., Zhuravlev A.V., Kizilay A. Optimization of multistatic antenna system of subsurface radar. Radiotekhnika. 2020. V. 84. № 9(17). P. 26−39. DOI: 10.18127/j00338486-202009(17)-02 (In Russian).

References
  1. Suhanov D.Ja., Zav'jalova K.V. Vosstanovlenie trehmernyh radioizobrazhenij po rezul'tatam mnogochastotnyh golograficheskih izmerenij. Zhurnal tehnicheskoj fiziki. 2012. T. 82. Vyp. 6. S. 85–89 (In Russian).
  2. Razevig V.V., Bugaev A.S., Ivashov S.I., Vasil'ev I.A., Zhuravlev A.V. Vlijanie shiriny polosy chastot na kachestvo vosstanovlenija podpoverhnostnyh radiogologramm. Uspehi sovremennoj radiojelektroniki. 2012. № 3. S. 3–13 (In Russian).
  3. Zhuravlev A.V., Ivashov S.I., Razevig V.V., Vasiliev I.A., Turk A.S., and Kizilay A. Holographic Microwave Imaging Radar for Applications In Civil Engineering. Proceedings of the IET International Radar Conference. 14–16 April 2013. Xian, China.
  4. Zhuravlev A.V., Ivashov S.I., Razevig V.V., Vasiliev I.A., Bugaev A.S. Holographic subsurface radar RASCAN-5. 2013 7th International Workshop on Advanced Ground Penetrating Radar, Nantes, 2013. P. 1–6.
  5. Sljusar V.I. Sistemy MIMO: principy postroenija i obrabotka signalov. Jelektronika: nauka, tehnologija, biznes. 2005. № 8. S. 52–58.
  6. Counts T., Gurbuz A. C., Scott W. R., McClellan J. H., Kim K. Multistatic Ground-Penetrating Radar Experiments. IEEE Transactions on Geoscience and Remote Sensing. 2007. V. 45. № 8. P. 2544–2553.
  7. Chapurskij V.V. Poluchenie radiogolograficheskih izobrazhenij ob#ektov na osnove razrezhennyh antennyh reshetok tipa MIMO s odnochastotnym i mnogochastotnym izlucheniem. Vestnik MGTU im. N.Je. Baumana. Ser. «Priborostroenie». 2011. Vyp. 4 (85). S. 72–91.
  8. Li J., Stoica P. MIMO radar signal processing. John Wiley & Sons, Inc. 2009. P. 75–77.
  9. Ender J. H. G., Klare J. System architectures and algorithms for radar imaging by MIMO-SAR. Proc. of IEEE Radar Conf. Pasadena, CA, USA. May 2009. P. 1–6.
  10. Qi Y., Wang Y., Tan W., Hong W. Application of sparse array and MIMO in near-range microwave imaging. Proc. of SPIE Remote Sensing. Prague, Czech Republic. Oct. 2011. V. 8179. Art. no. 81790X. P. 13.
  11. Sheen D.M., McMakin D.L., Hall T.E. Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Transactions on Microwave Theory and Techniques. 2001. V. 49. № 9. P. 1581–1592.
  12. Oficial'nyj sajt Altair FEKO [Jelektronnyj resurs]. Rezhim dostupa: https://altairhyperworks.com/product/FEKO − svobodnyj. (Data obrashhenija: 31.08.2020) (In Russian).
  13. Kuriksha A.A. Algoritm obratnoj proekcii v zadachah vosstanovlenija prostranstvennogo raspredelenija istochnikov voln. Radiotehnika i jelektronika. 2002. T. 47. № 12. S. 1484–1489 (In Russian).
  14. Dubois F., Schockaert C., Callens N., Yourassowsky C. Focus plane detection criteria in digital holography microscopy by amplitude analysis. Optics Express. 2006. V. 14. № 13. P. 5895–5908.
  15. Razevig V.V., Ivashov A.I., Bugaev A.S., Zhuravlev A.V. Teoreticheskoe i jeksperimental'noe sravnenie razlichnyh metodov vosstanovlenija radiogologramm v podpoverhnostnoj radiolokacii. Radiotehnika. 2020. T. 84. № 1(2). S. 62−72 (In Russian).
  16. Kotel'nikov V.A. O propusknoj sposobnosti «jefira» i provoloki v jelektrosvjazi. Uspehi fizicheskih nauk. 2006. № 7. S. 762–770  (In Russian).
  17. Nocedal J., Wright S.J. Numerical Optimization. 2nd edition. USA: Springer. 2006.
Date of receipt: 1 июля 2020 г.