350 rub
Journal Radioengineering №8 for 2020 г.
Article in number:
Forming the spatial characteristics of dual-microphone arrays based on a priori information
Type of article: scientific article
DOI: 10.18127/j00338486-202008(16)-05
UDC: 621.391.8
Authors:

S.V. Perelygin − Ph.D. (Eng.), 

Audiovisual Systems and Technologies Department

Saint-Petersburg State University of Film and Television (Saint-Petersburg, Russia)

E-mail: sergey.perelygin@gmail.com

M.B. Stolbov − Ph.D. (Eng.), Associate Professor, 

Information Technologies and Programming Faculty,

ITMO University (Saint-Petersburg, Russia)

Abstract:

The work is devoted to the issue of increasing the efficiency of acoustic information acquisition using microphone arrays in the presence of coherent noise and an isotropic noise field. An increase in the efficiency of speech extraction can be achieved by forming a beampattern of the microphone arrays taking into account information about the noise of the environment. The main attention is paid to the spatial characteristics of microphone arrays in the low-frequency band. It is shown that the application of the principle of Minimum Variance Distortionless Response allows one to suppress coherent interference and also increase the spatial selectivity of the microphone array in the low-frequency band. The results may be useful for improving the means of acoustic information capture based on microphone arrays.

Pages: 28-36
For citation

Perelygin S.V., Stolbov M.B. Forming the spatial characteristics of dual-microphone arrays based on a priori information. Radiotekhnika. 2020. V. 84. № 8(16). P. 37−49. DOI: 10.18127/j00338486-202008(16)-05 (In Russian

References
  1. Tashev I. Sound Capture and Processing: Practical Approaches. Wiley. 2009.
  2. Buck M. et al. A compact microphone array system with spatial post-filtering for automotive applications. In Proc. ICASSP 2009.  Р. 221-224. 
  3. Brandstein M. and Ward D. (Eds.). Microphone Arrays. Heidelberg, Germany: Springer-Verlag. 2001 (Bitzer J., Simmer K. Superdirective Microphone Arrays. Ch. 2. Р. 19-38).
  4. Buck M., Rößler M. First order differential microphone arrays for automotive applications. Proc. 7th International Workshop on Acoustic Echo and Noise Control. IWAENC. Darmstadt, Germany. 2001. Р. 19–22.
  5. Weber R., Huang Y., Tidd W. Cognitive beamforming antenna. Proc. IEEE. Oct. 2010. V. 20. № 6. 
  6. Mc Cowan I.A. Microphone Arrays: A Tutorial. Available at: http://www.aplu.ch/home/download/microphone_array.pdf (accessed 2.07.2020). 
  7. Stolbov M.B., Perelygin S.V. Algoritmy dvuhjelementnoj mikrofonnoj reshetki dlja vydelenija rechevyh signalov v prisutstvii kogerentnyh pomeh. Cifrovaja obrabotka signalov. 2017. № 4. S. 34-39 (In Russian).
  8. Friedlander B., Porat B. Performance analysis of a null-steering algorithm based on direction-of-arrival estimation. Proc. IEEE Trans. on Signal Processing. Apr. 1989. V. 37. № 4. 
  9. Huang Y., Panique M. Performance analysis of a null steering algorithm. Proc. IEEE. July 2007. № 7. 
  10. Lockwood M. et al. Performance of time- and frequency-domain binaural beamformers based on recorded signals from real rooms.  J. Acoust. Soc. Am. January 2004. V. 115. № 1. Р. 379-391.
  11. Stolbov M.B., The K.Ch. Priem rechevyh signalov v shumovoj obstanovke s ispol'zovaniem dvuhjelementnyh mikrofonnyh reshetok. Nauchno-tehnicheskij vestnik informacionnyh tehnologij, mehaniki i optiki. 2018. T. 18. № 5. S. 850–857 (In Russian).
  12. Bitzer J., Kammeyer K., and Simmer K. An alternative implementation of the superdirective beamformer. Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. 1999. Р. W99-1 – W99-4.
  13. Olejnikov A.N., Borodavka A.V. Osnovnye napravlenija sovershenstvovanija sredstv akusticheskoj razvedki. Radiotehnika. 2017.  Vyp. 189. S. 189-194 (In Russian).
Date of receipt: 6 апреля 2020 г.