350 rub
Journal Radioengineering №8 for 2020 г.
Article in number:
Distribution of microwave energy in a dissipative dielectric layer moving along a circular path through a combination of grooved waveguides
Type of article: scientific article
DOI: 10.18127/j00338486-202008(15)-02
UDC: 621.372.2
Authors:

V.Ya. Yavchunovsky – Dr.Sc. (Phуs.-Math.), General Director, 

SPC «ETNA PLYUS» (Saratov)

E-mail: vyy@etna.su

A.K. Kobets – Post-graduate Student, 

Department of Solid State Physics, 

Saratov National Research State University named after N. G. Chernyshevsky

E-mail: cobets.alexander@yandex.ru

V.A. Tolstov – Under-graduate Student, 

Department of Electric Power Engineerig and Electrotechnology, 

Yuri Gagarin State Technical University of Saratov 

E-mail: v.tolstof@yandex.ru 

E. I. Yusov – Engineer, 

SPC «ETNA-PLYUS» (Saratov) 

E-mail: yusov.evgeniy@etna.su

Abstract:

While setting up microwave drying and disinfecting production facilities, industrial conveyor systems manufactured by the Russian company Etna-Plus LTD, built on a combination of oversized grooved waveguides connected in parallel, were widely used. However, for a number of practical purposes, in particular, for small farms, much smaller miniature plants of lower productivity are required. One of the options for such equipment, using the motion of the interaction of microwave radiation with dielectric products moving along a closed circular path, is proposed and investigated in this article. Special attention was paid to implementation of the most uniform distribution of high-frequency field energy along the width of the annular ribbon of the product moving along a circular path.  In order to develop and create such equipment, the distribution of energy release in a dissipative dielectric layer moving along circular paths in the microwave electromagnetic field inside an electrodynamic system constructed from a combination of parallel grooved waveguides (GW) was studied. 

The basic design relationships are obtained, which are necessary for modeling of processes in a system of GW loaded by dielectric. It has been shown that for the selected best sizes of the annular layer and for attenuation parameters, typical for such processes in the dielectric (including the one corresponding to the last stage of microwave drying), the maximum difference in the energy, obtained by unit volumes of dissipative dielectric objects moving along circular paths at the maximum and minimum radii of the ring, is only a few percent. 

The proposed on the basis of the calculations design of such equipment allows to solve the problem of creating miniaturized microwave installations with a ring conveyor and to ensure high uniformity of field dissipation in their working area, and to realize highquality dried products in them.

The basic relations obtained in this work can be used for calculation and simulation of microwave drying equipment with the circular motion of dielectric objects of various levels of productivity.

Pages: 12-20
For citation

Явчуновский В.Я., Кобец А.К., Толстов В.А., Юсов Е.И. Распределение выделения СВЧ-энергии в диссипативном диэлектрическом слое, движущемся по круговой траектории через совокупность желобковых волноводов // Радиотехника. 2020. Т. 84. № 8(15). С. 13−20. DOI: 10.18127/j00338486-202008(15)-02.

References
  1. Patent №2055447 (RF). Prioritet ot 27.02.96. Ustanovka dlja SVCh-obrabotki dijelektricheskih materialov. Suchkov S.G., Mirkin V.I., Upolovnev A.V. i dr.  (In Russian).
  2. Patent № 2084084 (RF). Prioritet ot 10.07.97. Ustanovka dlja SVCh-obrabotki dijelektricheskih materialov. Maljarchuk V.A., Mirkin V.I., Suchkov S.G. i dr. (In Russian).
  3. A.s. na poleznuju model' №00004369 (RF). Prioritet ot 19.06.96. Ustrojstvo dlja sushki produktov. Javchunovskij V.Ja., Maljarchuk V.A.  (In Russian).
  4. Javchunovskij V.Ja. Mikrovolnovaja i kombinirovannaja sushka: fizicheskie osnovy, tehnologii i oborudovanie. Saratov: Izd-vo Sarat. un-ta. 1999 (In Russian).
  5. L'vicyn A.V., Maljarchuk V.A., Javchunovskaja S.V. Reshenie zadach preobrazovanija i transportirovki jelektromagnitnyh SVCh kolebanij primenitel'no k oborudovaniju mikrovolnovoj sushki dijelektricheskih ob#ektov. Mezhvuz. nauch. sb. «Voprosy preobrazovatel'noj tehniki, chastotnogo jelektroprivoda i upravlenija». Saratov: Sarat. gos. tehn. un-t. 1996. S. 47-58 (In Russian).
  6. Grajsmen D. Zhelobkovyj volnovod. Kvazioptika. Per. s angl. i nem. pod red. B.Z. Kacenelenbauma i V.V. Shevchenko. M.: Inostrannaja literatura. 1966 (In Russian).
  7. Dolgopjatov R.M., Javchunovskaja S.V. Avtomatizirovannyj kompleks mikrovolnovoj sushki sel'skohozjajstvennoj pro¬dukcii. Tezisy dokl. Mezhd. nauch.-tehn. konf. «Modelirovanie i prognozirovanie agrarnyh jenergoresursosberegajushhih processov i tehnologij v uslovijah rynochnyh otnoshenij». Minsk. 1997. S. 27 (In Russian).
Date of receipt: 14 мая 2020 г.