A.S. Bankovsky – Ph.D. (Phys.-Math.), Associate Professor,
Department of Electronic Devices, Yuri Gagarin State Technical University of Saratov E-mail: alexm@sstu.ru
A.A. Zakharov – Dr.Sc. (Eng.), Professor,
Department of Electronic Devices, Yuri Gagarin State Technical University of Saratov E-mail: zaharov@sstu.ru
A.A. Potapov – Postgraduate Student,
Department of Electronic Devices, Yuri Gagarin State Technical University of Saratov
E-mail: potapov_andrey13@mail.ru
A.A. Shvachko – Ph.D. (Eng.), Associate Professor,
Department of Electronic Devices, Yuri Gagarin State Technical University of Saratov Email: alexandr1899@gmail.com
In gas-discharge plasma devices limited by dielectric walls, as a rule, a positive spatial charge is formed. If the plasma is quasineutral, then the space charge is much smaller than the space charge of electrons (ions). The properties of such a quasineutral plasma are studied in detail in the regime of ambipolar diffusion of charged particles to dielectric walls. In devices with small transverse dimensions, the space charge can affect the longitudinal electric field, which will depend not only on the magnitude of the electron temperature, but also on the geometry of the device. In the work, analytical expressions for the space charge in a bounded plane plasma in which the ambipolar diffusion mode is carried out under zero and more accurate boundary conditions for concentration are obtained and analyzed. Similar relations were obtained for a cylindrical plasma model under zero boundary conditions for concentration. The minimum values of the transverse dimensions of a quasineutral plasma are obtained for a planar and cylindrical model in the ambipolar diffusion mode. It is shown that the condition for the stability of a discharge in a plasma substantially depends not only on the diffusion and ionization parameters of the plasma, but also on the magnitude of the space charge. The effect of space charge on the electron energy balance is investigated. A criterion is obtained in which the space charge changes the magnitude of the longitudinal electric field of a quasineutral plasma. It is shown that with increasing pressure and decreasing mass of plasma atoms, the longitudinal field increases. This allows for the passage of current in narrow long tubes of He-Ne lasers and explains the high sensitivity to the magnetic field in gas-discharge Hall sensors.
Bankovsky A.S., Zakharov A.A., Potapov A.A., Shvachko A.A. Influence of the spatial charge in a gas-discharge plasma on the stability of the particle balance and the current component of the electric field strength. Radiotekhnika. 2020. V. 84. № 7(14). P. 50−. DOI: 10.18127/j00338486-202007(14)-07.
- Golant V. E., Zhilinskij A. P., Saharov I. E. Osnovy fiziki plazmy. SPb: Lan'. 2011. 448 s. DOI: 10/1364/AO.20.001360 (In Russian).
- Granovskij V.L. Jelektricheskij tok v gaze. M.: Nauka. 1971. 543 s. (In Russian).
- Taccogna F., Dilecce G. Non-equilibrium in low-temperature plasmas. The European Physical Journal D. 2016. V. 70. № 11. P. 37. DOI: 10.1140/epjd/e2016-70474-0.
- Gohain M., Karmakar P.K. Evolutionary Sheath Structure in Magnetized Collisionless Plasma with Electron Inertia. Plasma Physics Reports. 2017. V. 43. № 9. P. 957–968. DOI: 10.1134/ S1063780X1709.
- Medvedev A.Je. Perenos plazmy v uslovijah protekajushhego toka. Izvestija vuzov. Ser. Fizika. 2012. T. 55. № 4. S. 44-47 (In Russian).
- Bankovskij A.S., Galileev S.V., Zaharov A.A., Svetlakov V.M. Balans zarjazhennyh chastic diffuzionnoj plazmy v poperechnom magnitnom pole. Materialy Mezhdunar. nauch.-tehn. konf. «Aktual'nye problemy jelektronnogo priborostroenija (APJeP-2008)». Saratov: SGTU. 2008. S. 399-404 (In Russian).
- Bankovskij A.S., Zaharov A.A., Ivanova A.A. Jelektrofizicheskie svojstva ploskoj gazorazrjadnoj plazmy, ogranichennoj dijelektricheskimi stenkami. Radiotehnika. 2015. № 7. S. 48-53 (In Russian).
- Bankovskij A.S., Zaharov A.A., Potapov A.A. Raspredelenie prostranstvennogo zarjada v zamagnichennoj gazorazrjadnoj plazme, ogranichennoj ploskimi dijelektricheskimi stenkami. Radiotehnika. 2018. № 8. S. 95-100. DOI: 10/18127/j00338486-201808-19 (In Russian).
- Mihajlovskij A. B. Jelektromagnitnye neustojchivosti neodnorodnoj plazmy. M.: Jenergoatomizdat. 1991. 350 s. (In Russian).
- Bankovskij A.S., Ivanov V.V, Kulakova V.I. Gazorazrjadnye magnitoopticheskie preobrazovateli dlja izmerenija sostavljajushhih magnitnoj indukcii. Jelektrovakuumnye i gazorazrjadnye pribory. 1989. Vyp. 1. № 124. S. 37-39 (In Russian).