350 rub
Journal Radioengineering №7 for 2020 г.
Article in number:
Miniature two-gap photonic crystal resonators with fractal resonant elements made on a printed circuit board
Type of article: scientific article
DOI: 10.18127/j00338486-202007(14)-06
UDC: 621.385
Authors:

V.A. Tsarev – Dr.Sc. (Eng), Professor, 

Department «Electronic Devices», Yuri Gagarin State Technical University of Saratov

Е-mail: tsarev_va@mail.ru 

A.Yu. Miroshnichenko Dr. Sc. (Eng), Associate Professor, Head of the Department «Electronic Devices»,  Yuri Gagarin State Technical University of Saratov

Е-mail: alexm@sstu.ru

А.V. Gnusarev – Post-graduate Student, 

Department «Electronic Devices», Yuri Gagarin State Technical University of Saratov

Е-mail: 19953@bk.ru

N.A. Akafyeva – Ph.D. (Eng) Associate Professor, 

Department «Electronic Devices», Yuri Gagarin State Technical University of Saratov

Е-mail: akafieva_na@mail.ru

M. A. Chernyshev – Post-graduate Student, 

Department «Electronic Devices», Yuri Gagarin State Technical University of Saratov Е-mail: tchernysheff.max@yandex.ru

Abstract:

To create low-voltage multi- beam klystrons operating at the frequencies of the Ku and K bands, it is necessary to move on to new principles of design and manufacturing technology for the resonator systems of these devices. However, the creation of such electrodynamic systems in the millimeter and submillimeter ranges is a difficult task. Classical designs of double-gap resonators have low manufacturability and low resistance to vibration. In this regard, the creation of miniature multi- beam klystrons, whose resonant elements, as well as TWT slowing systems, are made on printed circuit boards located perpendicular to the direction of motion of the electron beam, is of considerable interest. Such designs of electrodynamic systems provide high adaptability and good resistance to vibration. The aim of this work is to study the electrodynamic characteristics and parameters of multichannel two-gap photonic crystal resonators with fractal resonant elements “Sierpinski triangle” (MTGPCR). Such resonant systems are excited at the resonant frequencies of the fundamental and higher modes corresponding to antiphase (π) and in-phase (2π) RF voltages in the gaps at which it is possible to realize effective interaction with a multipath electron beam. 

The resonator interaction space is located inside the defect formed by a lattice of round metal rods. In the central part of the threedimensional defect on a suspended dielectric substrate there is a central electrode with 13 holes for transmitting electron beams, which is connected to two half-wave resonant conductors with fractal elements. The shape of this element is determined by the iteration number (K= 0,1,2) of the Sierpinski Triangle fractal. Three resonator designs with a fractal resonant conductor of zero, first and second iteration were investigated. The main electrodynamic parameters of the resonator were determined. It was established that in the investigated resonance system the antiphase and in-phase modes of oscillations have a frequency spacing of 6-7%. As a working mode, it is advisable to choose the in-phase type of oscillation. The optimal form of the fractal element is the fractal of the second iteration. The behavior of the resonant frequencies of the resonator as a function of the step of the photonic crystal lattice was also studied. The developed practical recommendations for choosing the optimal parameters of resonator designs can be used in the development of miniature klystron-type multi- beam devices operating as amplifiers, generators, or frequency multipliers.

Pages: 41-49
For citation

Царев В.А., Мирошниченко А.Ю., Гнусарев А.В., Акафьева Н.А., Чернышев М.А. Миниатюрные двухзазорные фотонно-кристаллические резонаторы с фрактальными резонансными элементами, выполненными на печатной плате // Радиотехника. 2020. Т. 84. № 7(14). С. 41−49. DOI: 10.18127/j00338486-202007(14)-06.

References
  1. Alybin V.G., Semochkin A.S. Bortovye tverdotel'nye SVCh-usiliteli moshhnosti budushhego dlja komandno-izmeritel'nyh sistem. Raketno-kosmicheskoe priborostroenie i informacionnye sistemy. 2016. T. 3. Vyp. 3. S. 89-97 (In Russian).
  2. Rakova E.A., Galdeckij A.V., Korepin G.F. i dr. Proektirovanie i issledovanie tehnologii izgotovlenija perspektivnoj zamedljajushhej sistemy dlja LBV W-diapazona. Sb. statej V Vseross. konf. «Jelektronika i mikrojelektronika SVCh». SPb: Izd-vo SPbGJeTU «LJeTI». 2016. T. 1. S. 148-152 (In Russian).
  3. Smirov A., Newsham D., Yu D. PBG cavities for single-beam and multi-beam electron devices. Proceedings of the 2003 Particle Accelerator Conference. Portland, Oregon, USA. 2003. P. 1153-1155.
  4. Yu D., Newsham D., Smirnov A. PBG structures for multi-beam devices. AIP Conference Proceedings. 2002. V. 647. Is. 1. P. 394.
  5. Xu Y., Seviour R. Design of photonic crystal klystrons. Proceedings of the 1st International Particle Accelerator Conference.  JACoW. Kyoto, Japan. 2010. Р. 4002-4004.
  6. Yogesh Kumar Choukiker, Santanu Kumar Behera, Rajeev Jyoti. Sectoral sierpinski gasket fractal antenna for wireless LAN applications. International Journal of RF and Microwave Computer Aided Engineering, 2012. V. 22. Is. 1. P. 68‐            –74.
  7. Ray Arup, Kahar Manisha, Sarkar Debashree, Sarkar P. P. On fractal FSS suitable for WLAN and WiMAX communication. Microwave and Optical Technology Letters. 2015. V. 57. Is. 7. P. 1546–1550.
  8. Hang Weng, Lin-Shen Chang, Wei-Yu Chen, Cheng-Yuan Hung, Ru-Yuan Yang. Design of novel miniaturized and high quality Sierpinski square resonators. Microwave and Optical Technology Letters. 2008. V. 50. Is. 6. P. 1469–1471.
  9. Malik J., Kartikeyan M.V. A stacked equilateral triangular patch antenna with sierpinski gasket fractal for WLAN applications. Progress In Electromagnetics Research Letters. 2011. V. 22. P. 71-81. 
  10. Svidetel'stvo ob oficial'noj registracii programmy dlja JeVM №2011611748 ot 24.02.2011. REZON. Muchkaev V.Ju., Carev V.A.  (In Russian).
  11. Grigor'ev A.D., Jankevich V.B. Rezonatory i rezonatornye zamedljajushhie sistemy SVCh. M.: Radio i svjaz', 1984. 247 s. (In Russian).
Date of receipt: 14 мая 2020 г.