350 rub
Journal Radioengineering №7 for 2020 г.
Article in number:
New vertical heterostructures based on monolayers of 2D semiconductor materials: atomic and electronic structures
Type of article: scientific article
DOI: 10.18127/j00338486-202007(14)-04
UDC: 538.9
Authors:

O.E. Glukhova − Dr.Sc. (Phys.-Math.), Professor, 

Head of Department of Radiotechnique and Electro-dynamics, 

Saratov National Research State University named after N. G. Chernyshevsky

E-mail: glukhovaoe@info.sgu.ru 

M.M. Slepchenkov − Ph.D. (Phys.-Math.), Associate Professor,

Department of Radiotechnique and Electrodynamics, 

Saratov National Research State University named after N. G. Chernyshevsky 

E-mail: slepchenkovm@mail.ru

D.A. Kolosov − Post-graduate Student, Junior Research Scientist, 

Department of Radiotechnique and Electrodynamics,

Saratov National Research State University named after N. G. Chernyshevsky E-mail: demkol.93@mail.ru

Abstract:

This paper is devoted to the theoretical forecasting of new configurations of vertical heterostructures based on monolayers of semiconductor graphene-like 2D materials - borophane, blue phosphorus and gallium nitride. Within the framework of the density functional theory using the Quantum Espresso software package, the equilibrium configurations of unit cells of atomistic models of two types of two-layer heterostructures (borophane/gallium nitride and gallium nitride/blue phosphorus), as well as one type of threelayer heterostructures (gallium nitride/blue phosphorus/gallium nitride) were found. According to the results of calculating the energy of formation of layered structures, it was established that the constructed atomistic models are energetically stable, which means that they can be obtained during the synthesis. For the constructed unit cells of heterostructures, band structure calculations were performed. The structure of the first Brillouin zone is a rectangle for all considered types of layered 2D structures. Based on the calculation of the band structure, the type of conductivity of the material was determined from the energy gap between the conduction and valence bands. It was found that all the two-layer and three-layer heterostructures considered in this work are semiconductors. The size of the energy gap varies in the range from 0.57 eV to 1.3 eV, depending on the type of monolayers being combined and the manner of their arrangement. The largest energy gap is observed in heterostructures, in which gallium nitride predominates. This is due to its pronounced semiconductor properties. The possibility of topological control of the energy gap size of vertical heterostructures opens up the prospects of developing a new generation of semiconductor nanodevices based on them.

Pages: 26-33
For citation

Glukhova O.E., Slepchenkov M.M., Kolosov D.A. New vertical heterostructures based on monolayers of 2D semiconductor materials: atomic and electronic structures. Radiotekhnika. 2020. V. 84. № 7(14). P. 26−33.  DOI: 10.18127/j00338486-202007(14)-04.

References
  1. Novoselov K. S., Mishchenko A., Carvalho A., Castro Neto A. H. 2D materials and van der Waals heterostructures. Science. 2016. V. 353. P. aac9439. DOI: 10.1126/science.aac9439.
  2. Castellanos-Gomez A. Why all the fuss about 2D semiconductors?. Nat. Photon. 2016. V. 10. P. 202-204.  DOI: 10.1038/nphoton.2016.53.
  3. Liu M., Yin X., Ulin-Avila E. et al. A graphene-based broadband optical modulator. Nature. 2011. V. 474. P. 64-67.  DOI: 10.1038/nature10067. 
  4. Furchi M., Urich A., Pospischil A. et al. Microcavity-integrated graphene photodetector. Nano Lett. 2012. V. 12. P. 2773-2777.  DOI: 10.1021/nl204512x. 
  5. Eda G., Maier S. A. Two-dimensional crystals: Managing light for optoelectronics. ACS Nano. 2013. V. 7. P. 5660-5665.  DOI: 10.1021/nn403159y.
  6. Xia F., Wang H., Xiao D, Ramasubramaniam A. Two-dimensional material nanophotonics. Nat. Photon. 2014. V. 8. P. 899-907.  DOI: 10.1038/nphoton.2014.271. 
  7. Geim A. K., Grigorieva I. V. Van der Waals heterostructures. Nature. 2013. V. 499. P. 419-425. DOI: 10.1038/nature12385.
  8. Duong D. L., Yun S. J., Lee Y. H. Van der Waals Layered Materials: Opportunities and Challenges. ACS Nano. 2017. V. 11. P. 1180311830. DOI: 10.1021/acsnano.7b07436.
  9. Nguyen B. H., Nguyen V. H. Two-dimensional hexagonal semiconductors beyond graphene. Adv. Nat. Sci: Nanosci. Nanotechnol. 2016. V. 7. P. 043001. DOI: 10.1088/2043-6262/7/4/043001.
  10. Manzeli S., Ovchinnikov D., Pasquier D. et al. 2D-transition metal dichalcogenides. Nat. Rev. Mater. 2017. V. 2. P. 17033.  DOI: 10.1038/natrevmats.2017.33.
  11. Britnell, L., Gorbachev, R. V., Jalil R. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science. 2012. V. 335. P. 947-950. DOI: 10.1126/science.1218461.
  12. Chen C. C., Li Z., Shi L., Cronin S. B. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res. 2015. V. 8. P. 666-672. DOI: 10.1007/s12274-014-0550-8.
  13. Withers F., Del Pozo-Zamudio O., Mishchenko A. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015. V. 14. P. 301-306. DOI: 10.1038/nmat4205.
  14. Li X., Lin S., Lin X. et al. Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector. Opt. Express. 2016. V. 24. P. 134-145. DOI: 10.1364/OE.24.000134.
  15. Wang J., Ma F., Sun M. Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv. 2017.  V. 7. P. 16801-16822. DOI: 10.1039/C7RA00260B.
  16. Tian H., Chin M.L., Najmaei S. et al. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016. V. 9. P. 1543–1560. DOI: 10.1007/s12274-016-1034-9.
  17. Wang Z., Lü T., Wang H. et al. New crystal structure prediction of fully hydrogenated borophene by first principles calculations. Sci. Rep. 2017. V. 7. P. 609. DOI: 10.1038/s41598-017-00667-x.
  18. Golias E., Krivenkov M., Varykhalov A. et al. Band Renormalization of Blue Phosphorus on Au(111). Nano Lett. 2018. V. 18.  P. 6672-6678. DOI: 10.1021/acs.nanolett.8b01305.
  19. Giannozzi P., Baroni S., Bonini N. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009. V. 21. P. 395502. DOI: 10.1088/0953-8984/21/39/395502. 
  20. Byrd R. H., Nocedal J. A tool for the analysis of Quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal. 1989. V. 26. P. 727-739. DOI: 10.1137/0726042. 
  21. Blochl P.E. Projector augmented-wave method. Phys. Rev. B. 1994. V. 50. P. 17953. DOI: 10.1103/PhysRevB.50.17953.
  22. Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996. V. 77. P. 3865.  DOI: 10.1103/PhysRevLett.77.3865. 
  23. Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976. V. 13. P. 5188.  DOI: 10.1103/PhysRevB.13.5188.
Date of receipt: 14 мая 2020 г.