350 rub
Journal Radioengineering №7 for 2020 г.
Article in number:
Energy stability and electronic properties of carbon nanotorus at a localized breaking of interatomic bonds: computer modeling
Type of article: scientific article
DOI: 10.18127/j00338486-202007(14)-01
UDC: 538.9
Authors:

O.E. Glukhova − Dr.Sc. (Phys.-Math.), Professor, 

Head of Department of Radiotechnique and Electrodynamics, 

Saratov National Research State University named after N.G. Chernyshevsky

E-mail: glukhovaoe@info.sgu.ru 

M.M. Slepchenkov − Ph.D. (Phys.-Math.), Associate Professor,

Department of Radiotechnique and Electrodynamics, 

Saratov National Research State University named after N.G. Chernyshevsky 

E-mail: slepchenkovm@mail.ru

Abstract:

This paper is devoted to the study of the dynamic processes that occur in the carbon nanotorus during localized breaking of interatomic bonds, and to the analysis of the influence of these processes on the electronic properties of carbon nanotorus. The object of research is a carbon nanotorus with chirality indices (13, 0) with a diameter of 20 nm and a thickness of 1 nm obtained as a result of defect-free folding of a zigzag carbon nanotube of appropriate geometric dimensions into a ring. The behavior of the nanotorus is modeled by the molecular dynamics method using a modified Brenner potential to describe the interaction between atoms. It is shown that over time, the nanotorus straightens into a nanotube, while maintaining energy stability. It is found that the process of nanotorus straightening is accompanied by the appearance of deformation wave-like bends propagating at a speed of 200 m/s along the atomic network of the structure. These bends lead to deformation of the nanotorus and numerous local breaks in the bonds between atoms. However, broken bonds are restored within a few femtoseconds before the structure relaxes in energy, therefore, in general, the atomic framework of the nanotorus remains defect-free after rectification. The results of calculating the distribution of the density of electronic states (DOS) of a nanotorus by the self-consistent charge density functional tight-binding (SCC-DFTB) quantum method showed that at the moment of localized breaking of interatomic bonds around the circumference of the tubular framework, the nanotorus loses its semiconductor properties, becoming a gapless conductor. The discovered physical phenomenon explains the process of nanotorus formation during synthesis accompanied by multiple ruptures of the nanotori and reverse closure of the nanotubes into the nanotori.

Pages: 5-12
References
  1. Wang W., Laird E. D., Gogotsi Y., Li C. Y. Bending single-walled carbon nanotubes into nanorings using a Pickering emulsion-based process. Carbon. 2012. V. 50. P. 1769-1775. DOI: 10.1016/j.carbon.2011.12.024.
  2. Vimalanathan K., Chena X., Raston C. L. Shear induced fabrication of intertwined single walled carbon nanotube rings. Chem. Commun. 2014. V. 50. P. 11295-11298. DOI: 10.1039/C4CC03126A.
  3. Sabzyan H., Kowsarb M. Molecular dynamics simulations of electric field induced water flow inside a carbon nanotorus: a molecular cyclotron. Phys. Chem. Chem. Phys. 2017. V. 19. P. 12384-12393. DOI: 10.1039/C7CP01270E.
  4. Sarapat P., Hill J. M., Baowan D. Mechanics of atoms interacting with a carbon nanotorus: optimal configuration and oscillation behaviour. Philos. Mag. 2019. V. 99. P. 1386-1399. DOI: 10.1080/14786435.2019.1582849.
  5. Sarapat P., Hill J. M., Baowan D. A Review of Geometry, Construction and Modelling for Carbon Nanotori. Appl. Sci. 2019. V. 9.  P. 2301. DOI: 10.3390/app9112301.
  6. Kharissova O. V., Castañón M. G., Kharisov B. I. Inorganic nanorings and nanotori: State of the art. J. Mater. Res. 2019. V. 34.  P. 3998-4010. DOI: 10.1557/jmr.2019.370.
  7. Liu L., Liu F., Zhao J. Curved carbon nanotubes: From unique geometries to novel properties and peculiar applications. Nano Res. 2014. V. 7. P. 626-657. DOI: 10.1007/s12274-014-0431-1.
  8. Chen H., Zhang E., Zhanga K., Zhang S. The Aharonov–Bohm effect in the carbon nanotube ring. RSC Adv. 2015. V. 5. P. 4555145557. DOI: 10.1039/C5RA02039E. 
  9. Sun B. Deformation, Vibration, Buckling of Continuum Nanotorus. J. Nanomater. 2010. V. 2010. P. 480628.  DOI: 10.1155/2010/480628. 
  10. Feng C., Liew K. M. Fracture Properties of Defective Carbon Nanorings. J. Comput. Theor. Nanosci. 2011. V. 8. P. 1-7.  DOI: 10.1166/jctn.2011.1649. 
  11. Feng C., Liew K. M. Buckling Behavior of Armchair and Zigzag Carbon Nanorings. J. Comput. Theor. Nanosci. 2010. V. 7. P. 2049-2053. DOI: 10.1166/jctn.2010.1583. 
  12. Feng C., He P. F., Liew K. M., Xu W. Predicted mechanical properties of carbon nanotube-based structures. Int. J. Appl. Mech. 2014.  V. 06. P. 1450027. DOI: 10.1142/S1758825114500276. 
  13. Silveira J.F.R.V., Muniz A. R. Chain- and chainmail-like nanostructures from carbon nanotube rings. Comput. Mater. Sci. 2019. V. 161. P. 76-82. DOI: 10.1016/j.commatsci.2019.01.048.
  14. Chuang C., Guan J., Witalka D., et al. Relative stability and local curvature analysis in carbon nanotori. Phys. Rev. B. 2015. V. 91. 
    1. 165433. DOI: 10.1103/PhysRevB.91.165433.
  15. Liu L., Zhang L., Gao H., Zhao J. Structure, energetics, and heteroatom doping of armchair carbon nanotori. Carbon. 2011. V. 49.  P. 4518-4523. DOI: 10.1016/j.carbon.2011.06.062.
  16. Liu P., Zhang Y. W. A theoretical analysis of the effect of a Stone-Thrower-Wales defect on the stability of carbon nanotube-based nanorings. Carbon. 2010. V. 48. P. 2225-2230. DOI: 10.1016/j.carbon.2010.02.031. 
  17. Gluhova O.E., Kondrashov V.A., Nevolin V.K. i dr. Prognozirovanie stabil'nosti i jelektronnyh svojstv uglerodnyh nanotorov, sinteziruemyh pri vysokovol'tnom impul'snom razrjade v parah jetanola. Fizika i tehnika poluprovodnikov. 2016. T. 50. № 4. S. 509−514  (In Russian).
  18. Gluhova O.E., Kolesnikova A.S. Jempiricheskoe modelirovanie prodol'nogo rastjazhenija i szhatija grafenovyh nanochastic i nanolent. Fizika tverdogo tela. 2011. T. 53. № 9. S. 1855−1860 (In Russian).
  19. Evans D. J., Holian B. L. The Nose–Hoover thermostat. J. Chem. Phys. 1985. V. 83. P. 4069-4074. DOI: 10.1063/1.449071.
  20. Glukhova O. E. Molecular Dynamics as the Tool for Investigation of Carbon Nanostructures Properties. Thermal Transport in CarbonBased Nanomaterials; Zhang G. (Ed.). Elsevier. 2017. P. 267-289. DOI: 10.1016/B978-0-32-346240-2.00010-8.
  21. Glukhova O. E., Kolesnikova A. S., Slepchenkov M. M. Stability of the thin partitioned carbon nanotubes. J. Mol. Model. 2013. V. 19. 
    1. 4369-4375, DOI: 10.1007/s00894-013-1947-0.
  22. Elstner M. Gotthard Seifert Density functional tight binding. Phil. Trans. R. Soc. A. 2014. V. 372. P. 20120483.  DOI: 10.1098/rsta.2012.0483.
Date of receipt: 14 мая 2020 г.