350 rub
Journal Radioengineering №6 for 2020 г.
Article in number:
Accounting of moving target signal Doppler frequency increment in the course of primary radar processing in receiver of multistatic radar system based on special transmitters
Type of article: scientific article
DOI: 10.18127/j00338486-202006(12)-13
UDC: 621.396.967.2
Authors:

A.V. Zhuravlev – Dr.Sc. (Eng.), Senior Research Scientist, MainDesigner – Deputy General Director, JSC SPE «PROTEK» (Voronezh, Russia)

E-mail: protek@protek-vrn.ru

V.V. Kiryushkin − Ph.D. (Eng.), Associate Professor, Head of Department, 

JSC SPE «PROTEK» (Voronezh, Russia)

E-mail: kiryushkin.vlad@mail.ru

V.M. Bezmaga – Ph.D. (Eng.), Senior Research Scientist,

JSC SPE «PROTEK» (Voronezh, Russia)

E-mail: bezmaga@mail.ru

A.V. Smolin – Leading Engineer, Deputy Head of Department,

JSC SPE «PROTEK» (Voronezh, Russia)

Е-mail: protek@protek-vrn.ru

Abstract:

Target statement. At present, a large number of national and foreign theoretical and experimental researches are devoted to multipositional radar systems using various sources to illuminate targets. Previously, a multinational radar system was synthetized on a base of specialized radiators network, its energy accessibility zones were defined and its secondary processing subsystem’s accuracy features were investigated. All results were obtained for a fixed target, notably, without taking Doppler frequency shift into account. To assess what Doppler frequency shift has on the result of preliminary processing in a multipositional radar system’s receiver, adequate mathematical model is required. 

Objective. To develop a mathematical model of Doppler frequency shift of signal in a bistatic link «transmitter – target − receiver» and use it to study what impact Doppler frequency shift has on the result of preliminary processing in the receiver of multipositional radar system based on special radiators.

Results. The simulation modeling performed with the use of the developed mathematical model showed that when observing a highly dynamical air target with its maximal speed 400 m/s, Doppler frequency shift of the signal reflected from the target can reach volumes ±3 kHz in a multipositional radar system with base up to 40 km. To exclude the in tolerable signal degradation during its preliminary processing, the scanning pitch distance must not exceed 500 Hz with signal storage time 1000 mcs. Signal storage time prolongation up to 100 ms in order to enhance signal-to-noise ratio in preliminary processing system leads to acceptable scanning pitch distance decrease in Doppler frequency to 5-7 Hz. This leads to increase of the number of the visual stripes by Doppler frequency when the range of prior uncertainty of its values is fixed. 

Practical implication. The developed mathematical model allows to preliminarily assess what impact Doppler frequency shift of the signal reflected from the moving target has on the result of preliminary processing in the receiver of a multipositional radar system without conducting any natural experiments. 

Pages: 82-90
References
  1. Chernjak V.S. Mnogopozicionnaja radiolokacija. M.: Radio i svjaz'. 1993. 416 s. (In Russian).
  2. Fadeev R.S., Mjakin'kov A.V., Burov V.N., Ogurcov A.G. Vozmozhnosti obnaruzhenija i opredelenija koordinat malozametnyh celej v mnogopozicionnyh radiolokacionnyh sistemah s razmeshheniem pozicij na bortu bespilotnyh letatel'nyh apparatov. Izvestija vuzov Rossii. Ser. Radiojelektronika. 2014. Vyp. 6. S. 29-35 (In Russian).
  3. Kirjushkin V.V., Suprunov A.V., Volkov N.S. Ispol'zovanie navigacionnyh pozicionnyh metodov opredelenija koordinat v zadache nabljudenija vozdushnyh celej. Radiolokacija, navigacija i svjaz': Sb. trudov XXIV Mezhdunar. nauchno-tehnich. konf. (17-19 aprelja 2018 g.). Voronezh: OOO «Velborn». 2018. T. 3. S. 163-174 (In Russian).
  4. Dmitrenko A.A., Sedyshev S.Ju. Mezhpozicionnoe prostranstvenno-vremennoe otozhdestvlenie signalov v mnogopozicionnyh bazovokorreljacionnyh kompleksah passivnoj lokacii. Doklady BGUIR. 2016. T. 5. № 99. S. 85-91 (In Russian). 
  5. Kaplan L.M., Bar-Shalom Y., Blair W.D. Assignment Costs for Multiple Sensor Track-to-Track Association. IEEE Transactions on AES. April 2008. № 44(2). Р. 655-677. 
  6. Kiryushkin V.V., Cherepanov D.A. Coordinates estimation of the air target in the multiitem observation system «navigation satellites – the air target – the ground receiver». J. Sib. Fed. Univ. Eng. Technol. 2016. № 9(8). Р. 1172-1182. DOI: 10.17516/1999-494X-2016-98-1172-1182.
  7. Zhuravlev A.V., Kirjushkin V.V., Korovin A.V., Savin D.I. Sintez mnogopozicionnyh radiolokacionnyh sistem na baze specializirovannyh izluchatelej. Radiotehnika. 2018. № 7. S. 109–118. DOI: 10.18127/j00338486-201807-21. (In Russian).
Date of receipt: 17 марта 2020 г.