V.V. Kiryushkin − Ph.D. (Eng.), Associate Professor, Head of Department,
JSC SPE «PROTEK» (Voronezh, Russia)
E-mail: kiryushkin.vlad@mail.ru
V.G. Markin – Leading Engineer,
JSC SPE «PROTEK» (Voronezh, Russia)
E-mail: marvigs@mail.ru
A.V. Shuvaev – Leading Engineer,
JSC SPE «PROTEK»(Voronezh, Russia)
Е-mail: protek@protek-vrn.ru
Target statement. To localize spatial position of anaerial object by rho-rho fixing, it is necessary to know the distances from this object to four or more locators with known coordinates, and they must be located on the same plane. However, situations when it is necessary to localize the position of an aerial object with distance measuring instruments located on a flat surface, notably, on the same plane, often occur in practice.
Objective.Todevelopamethodofdeterminingtree-dimensioncoordinatesof an aerial object using long-distance measurements performed by locators based on the same plane (flate surface).
Results. The simulation modeling carried out with the implementation of the developed method showed that the most accurate localizing of anaerial object comparable to the accuracy of rho-rho fixing (30 m) is in the middle of the surveillance zone, notably, between the locators. When the aerial object moves out of the surveillance zone, its location error grows and reaches values like 350400 m. At the same time, the accuracy of measuring planar coordinates slowly increases: 75−80 m on edges of locator’s operational zone in comparison to 30-35 m in its center. Here, altitude measurement error contributes greatly in to the accuracy of defining spherical coordinates. The dependence of the altitude assessment accuracy from the flying altitude of the aerial object is exponential: when the flying altitude decreases, its determination accuracy increases manifold, and when the flying altitude is 150−200 m, it becomes comparable to its value.
Practical implication. The developed method can be effectively applied to solve the problem of defining tree-dimension coordinates of anaerial object in a multipositional radar system using distance measurement instruments based on a flat surface, and to preliminarily assess the potential accuracy of solution to this problem.
Kiryushkin V.V., Markin V.G., Shuvaev A.V. Air target 3D coordinates estimation based on range measurements from plain terrain placed radars. Radiotekhnika. 2020. V. 84. № 6(12). P. 67−73. DOI: 10.18127/j00338486-202006(12)-11.
- Global'naja sputnikovaja radionavigacionnaja sistema GLONASS. Pod red. V.N. Xapicova, A.F. Perova, V.A. Boldina. Izd. 2-e. M.: IPRZhR. 1999. 560 s. (In Russian).
- Shebshaevich B.C., Dmitriev P.P., Ivancevich I.V. i dr. Setevye sputnikovye radionavigacionnye sistemy. Izd. 2-e. M.: Radio i svjaz'. 1993. 408 s. (In Russian).
- Kononyhina N.A., Fedorov Ju.P. Jeffektivnyj algoritm i programma opredelenija mestonahozhdenija ob#ektov dlja sistemy mnogopozicionnoj radionavigacii. Teorija i tehnika radiosvjazi. 1997. Vyp. 1. S. 61-73 (In Russian).
- Markin V.G. Prjamye algoritmy rascheta koordinat ob’ektov v avtomatizirovannoj sisteme upravlenija takticheskogo zvena. Trudy VI Mezhdunar. konf. «Radiolokacija, navigacija i svjaz'». Voronezh. 2000. S. 112-120 (In Russian).
- Patent RF 2686847 MPK G01S 5/12 (2006.01). Sposob rascheta trehmernyh koordinat letatel'nogo apparata dal'nomer-nym metodom pri raspolozhenii stancij s izvestnymi koordinatami na ravninnoj mestnosti. V.G. Markin, V.A. Shuvaev, E.M. Krasov. Zajavl. 06.07.2018. opubl. 06.05.2019. Bjul. № 13. 5 s. (In Russian).