F.I. Ageev − Lecturer,
Mozhaisky Military Space Academy (St. Petersburg)
M.S. Vorona − Ph.D. (Eng.), Senior Engineer,
Mozhaisky Military Space Academy (St. Petersburg)
E-mail: voron_85@bk.ru
A.A. Gusarov − Ph.D. (Eng.), Associate Professor, Head of Department,
Mozhaisky Military Space Academy (St. Petersburg)
A.Y. Onufrey − Dr.Sc. (Eng.), Professor, Learding Research Scientist,
Military Scientific Research Institute, Mozhaisky Military Space Academy (St. Petersburg) E-mail: onufrey_a@mail.ru
The article considers a method for calculating the probability of correct detection of a useful signal at the input of a radar receiver in the conditions of unintended interference, as well as a simulation-modeling complex for the formation and processing of radar signals in the conditions of unintended interference. The results of the radar station functioning in the conditions of unintended interference with the use of various algorithms are presented: the algorithm of antenna array phasing taking into account the errors of the amplitude-phase distribution; an algorithm for adapting to the signal-noise environment with total-difference processing; an algorithm for generating a noise diagram taking into account the compensation of reception along the side lobes.
The main directions of increasing noise immunity are: adaptive processing of radar signals in the HEADLIGHTS; increasing the radar potential by increasing the power of transmitting means and the sensitivity of receiving devices; improvement of methods of processing of radar data; reducing the level of interference signals by controlling the shape of the bottom of the HEADLIGHTS. The developed method for calculating the probability of correct detection of a useful signal at the input of a radar receiver under the influence of unintended interference when using a simulation-modeling complex allows determining the probability of correct detection of a signal under the influence of interference in the study of various methods and algorithms for compensation and adaptation to interference.
- Vajshtejn L.A., Zubakov V.D. Vydelenie signalov na fone sluchajnyh pomeh. M.: Sovetskoe radio. 1960. 448 s. (In Russian).
- Popov A.S., Zvonarev V.V., Vorona M.S., Ageev F.I. Metodika rascheta pomehoustojchivosti sistemy radiosvjazi s uchetom dinamicheskih harakteristik sluchajnyh zamiranij signala. Radiotehnika. 2018. № 5. S. 92-99 (In Russian).
- Dzhun' V.I., Shhesnjak S.S. Adaptivnye antennye sistemy s podavleniem pomeh po glavnomu lepestku diagrammy napravlennosti. Zarubezhnaja radiojelektronika. 1988. № 4. S. 3-15 (In Russian).
- Maslov A.F., Liepin' U.R. Fazirovannye antennye reshetki s adaptivnoj regulirovkoj amplitudnogo raspredelenija. Radiotehnika. 1985. S. 3-12 (In Russian).
- Monzingo R.A., Miller T.U. Adaptivnye antennye reshetki: Vvedenie v teoriju. M.: Radio i svjaz'. 1989. 448 s. (In Russian).
- Teoreticheskie osnovy radiolokacii. Pod red. Ja.D. Shirmana. M.: Sovetskoe radio. 1970. (In Russian).
- Fedorova I.B. Informacionnye tehnologii v radiotehnicheskih sistemah. M.: MGTU im. N.Je. Baumana. 2003 (In Russian).
- Shirman Ja.D., Manzhos V.N. Teorija i tehnika obrabotki radiolokacionnoj informacii na fone pomeh. M.: Radio i svjaz'. 1981. 461 s. (In Russian).
- Vorona M.S. Model' obrabotki radiolokacionnoj informacii dlja ocenki pomehozashhishhennosti radiolokacionnoj stancii obzora vozdushnogo i kosmicheskogo prostranstva s adaptivnoj fazirovannoj antennoj reshetkoj. Antenny. 2017. № 12(244). S. 25-30. (In Russian).
- Applebaum S.P. Adaptive arrays. IEEE Trans. Antennas and Propagat. Sept. 1976. V. AP-24. № 5. Р. 585-598.
- Skobelev S.P. Fazirovannye antennye reshetki s sektornymi parcial'nymi diagrammami napravlennosti. M.: FIZMATLIT. 2010. 320 s. (In Russian).
- Barton D.K. Radar Equations for Modern Radar. Artech House. 2012. 264 p.
- Melvin W.L., Scheer J.A. (Eds). Principles of Modern Radar: Advanced Techniques. SciTech Publishing. 2013. 846 p.