350 rub
Journal Radioengineering №5 for 2020 г.
Article in number:
Results of mathematical modeling of noise immunity of satellite radio communication systems under the influence of intentional interference
Type of article: scientific article
DOI: 10.18127/j00338486-202005(10)-03
UDC: 621.396
Authors:

D.G. Pantenkov − Ph.D. (Eng.), Deputy Chief Designer of Radiocommunication Systems, 

JSC «Kronstadt» (Moscow)

E-mail: pantenkov88@mail.ru

Abstract:

Currently, mobile satellite radio communication systems (SRCS) are widely used, which allow to transfer information between subscribers, including special ones, around the world, including remote areas from the main infrastructure for terrestrial radio communications. Thus, from point of view of radio electronic action (REA) may effect onboard the relay spacecraft (SC) ground (aircraft) means REA, and the subscriber terminals (ST) or main earth stations (ES), subject to the availability of radio line of sight between the means of the REA and the object of exposure – ST or ES. At the same time, there are not enough «direct» means of protection against interference in at or main ES systems of mobile satellite radio communication, in contrast, for example, to the navigation equipment of consumers of satellite radio navigation systems. The main methods of ensuring noise immunity at ST SRCS are the expansion of the spectrum of the connected signal (direct or with hopping frequency), the use of modern coding methods, the transition to a higher frequency range in order to narrow the main lobe of the radiation pattern. Moreover, the subscriber terminals in this case can be understood as terminals of personal satellite radio communication, and terminals as part of mobile robotic (unmanned, automatic) objects, for example, unmanned aerial vehicles (UAV), transmitting command-telemetry and target information to a remote ground control and information processing center (GCIPC) using the orbital frequency resource of the spacecraft.

Taking into account the above, the purpose of this scientific and technical article is to consider the technical possibility of radio electronic impact on modern ST SRCS. To achieve this goal addressed the following key tasks: given the parameters of modern SRCS, developed a simplified block diagram of digital receiver models at the mathematical modeling work of at SRCS in the absence and presence of interference in the MathCad package, we obtained quantitative estimates of coefficients of influence, leading to malfunction SRCS with probability at least 0.9. In conclusion, the results of analysis and research are presented, conclusions are drawn, relevant proposals and recommendations for improving the noise immunity of SRCS are formed.

Pages: 20-30
References
  1. Gornostaev Ju.M. Perspektivnye sputnikovye sistemy svjazi. M.: Gorjachaja linija – Telekom. 2007. 298 s (In Russian).
  2. Kamnev V.E. Preimushhestva i nedostatki razlichnyh sputnikovyh sistem svjazi. Sb. dokladov «Sputnikovaja svjaz'-2007». M. 2007.  T. 1. 452 c (In Russian).
  3. Mashbic L.M. Komp'juternaja kartografija i zony sputnikovoj svjazi. SPb: Sistemy svjazi. 2008. 312 s. (In Russian).
  4. Skljar B. Cifrovaja svjaz'. Teoreticheskie osnovy i prakticheskoe primenenie. Izd. 2-e, ispr. Per. s angl. M.: Izdatel'skij dom «Vil'jams». 2004 (In Russian).
  5. Radiorelejnye i sputnikovye sistemy peredachi. Pod red. A.S. Nemirovskogo. M.: Radio i svjaz'. 1986 (In Russian).
  6. Askinazi G.B., Bykov V.L., D'jachkova M.N. i dr. Sputnikovaja svjaz' i veshhanie: Spravochnik. Izd. 2-e, pererab. i dop. Pod red.  L.Ja. Kantora. M.: Radio i svjaz'. 1988. 344 s (In Russian).
  7. Bartenev V.A., Bolotov G.V., Bykov V.L. i dr. Sputnikovaja svjaz' i veshhanie: Spravochnik. Izd. 3-e, pererab. i dop. Pod red. L.Ja. Kantora. M.: Radio i svjaz'. 1997. 528 s (In Russian).
  8. Egorov A.T., Lomakin A.A., Pantenkov D.G. Matematicheskie modeli ocenki skrytnosti sputnikovyh kanalov radiosvjazi s bespilotnymi letatel'nymi apparatami. Ch. 1. Trudy uchebnyh zavedenij svjazi. 2019. T. 5. № 3. S. 19‒26 (In Russian).
  9. Lomakin A.A., Pantenkov D.G., Sokolov V.M. Matematicheskie modeli ocenki skrytnosti sputnikovyh kanalov radiosvjazi s bespilotnymi letatel'nymi apparatami. Ch. 2. Trudy uchebnyh zavedenij svjazi. 2019. T. 5. № 4. S. 37-48 (In Russian).
  10. Patent RF na poleznuju model' 191 165, MPK N04 V 7/02 (2006.01). Bortovoj terminal radiosvjazi bespilotnogo letatel'nogo apparata. Dolzhenkov N.N., Abramov A.V., Egorov A.T., Lomakin A.A., Pantenkov D.G.; zajavitel' i patentoobladatel' AO «Kronshtadt». 26.07.2019. Bjul. № 21 (In Russian).
  11. Patent RF na izobretenie 0002556429, MPK N04 V 1/10 (2006.01). Nekogerentnyj cifrovoj demoduljator «v celom» kodirovannyh signalov s fazovoj manipuljaciej. Litvinenko V.P., Glushkov A.N., Pantenkov D.G.; zajavitel' i patentoobladatel' FGBOU VPO «Voronezhskij gosudarstvennyj tehnicheskij universitet». 10.07.2015. Bjul. № 19 (In Russian).
  12. Dolzhenkov N.N., Pantenkov D.G., Egorov A.T., Lomakin A.A., Litvinenko V.P., Velikoivanenko V.I., Lju-Kje-Sju E.Ju. Tehnicheskie harakteristiki kompleksa sredstv sputnikovoj radiosvjazi s bespilotnymi letatel'nymi apparatami. Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. 2019. T. 15. № 3. S. 74-82 (In Russian).
  13. Dolzhenkov N.N., Pantenkov D.G., Litvinenko V.P., Lomakin A.A., Egorov A.T., Gricenko A.A. Integrirovannyj kompleks dal'nej radiosvjazi dlja povyshenija jeffektivnosti reshenija celevyh zadach bespilotnymi letatel'nymi apparatami. Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. 2019. T. 15. № 3. S. 102-108 (In Russian).
  14. Sistemy sputnikovoj svjazi: Ucheb. posobie dlja vuzov. Pod red. L.Ja. Kantora. M.: Radio i svjaz'. 1992 (In Russian).
  15. Pantenkov D.G., Lomakin A.A. Ocenka ustojchivosti sputnikovogo kanala upravlenija bespilotnymi letatel'nymi apparatami. Radiotehnika. 2019. T. 83. № 11(17). S. 43-50. DOI: 10.18127/j00338486-201911(17)-04 (In Russian).
  16. Pantenkov D.G. Rezul'taty matematicheskogo modelirovanija pomehoustojchivosti sputnikovyh radionavigacionnyh sistem pri vozdejstvii prednamerennyh pomeh. Uspehi sovremennoj radiojelektroniki. 2020. № 2. S. 57-68. DOI: 10.18127/j20700784-202002-05 (In Russian).
Date of receipt: 12 марта 2020 г.