350 rub
Journal Radioengineering №5 for 2020 г.
Article in number:
Peculiar properties of terahertz frequency convertors design
Type of article: scientific article
DOI: 10.18127/j00338486-202005(9)-04
UDC: 621.382.2,621.374.4
Authors:

S.A. Meschkov − Ph.D.(Eng.), Associate Professor, 

Bauman Moscow State Technical University

Е-mail: meschkow@bmstu.ru

N.V. Fedorkova − Ph.D.(Eng.), Associate Professor, 

Bauman Moscow State Technical University

Е-mail: nvf@bmstu.ru

Abstract:

The article is devoted to the problem of the design of terahertz radiometers. It is shown, that design of devices of terahertz range is extremely sophisticated because of its microscopical sizes, absence of information concerning diode’s parameters and the lack of precision of expensive technologies. 

There has been examined modern constructions and measured results through research of terahertz frequency mixers and multipliers with Schottky diodes. There has been established basic elements such as micron size waveguides; GaAs, quartz or polyimide suspended striplines and planar GaAs Schottky barrier diodes. 

The GaAs membrane technology terahertz Schottky barrier diodes efficiency has choose.

There has given the recommendations of IEEE 1785.1-2012standard for determining the mechanical terahertz rectangular waveguides apertures dimensions. 

There has given the calculated results of waveguides step shape and of quarter-wave waveguide back short, synthesized using HFSS simulator to calculate their parameters in order to increase the match.

There has been established common tasks for design of the terahertz mixers and multipliers.

Pages: 37-46
References
  1. Pawar A.Y., Sonawane D.D., Erande K.B., Derle D.V. Terahertz technology and its applications. Drug Invention Today. 2013. V. 5(2).  P. 157–163.
  2. Sobis P. Subharmonic Sideband Separating Schottky Diode Mixer for Submillimetre Wave Applications. Chalmers University of Technology Gothenburg, Sweden. 2010. 79 p.
  3. Hanswal P. Terahertz Communication for Satellite Networks. 2018. June 1. P. 65.
  4. Siegel P.H., Smith R.P., Gaidis M.C., Martin S.C. 2.5-THz GaAs Monolithic Membrane-Diode Mixer. IEEE Transactions on microwave theory and techniques. May 1999. V. 47(5). Р. 596-604.
  5. Treuttel J., Thomas A., Maestrini A., Wang H., Alderman B., Siles J.V., Davis S., Narhi T. A 380 GHz sub-harmonic mixer using MMIC foundry based Schottky diodes transferred onto quartz substrate. 20th Int. Symp. Space THz Technol. Charlottesville. 2009. Apr.  20-22. P. 251-254.
  6. Bulcha B.T., Hesler J.L., Baker N.S. Development of THz Harmonic Mixer for QCL Phase Locking Application. 39th International Conference on infrared, Millimeter, and Terahertz Waves. IRMMW-THz. 13 November. 2014. 
  7. Erickson N.R. A Schottky-Diode Balanced Mixer for 1.5 THz. 19th International Symposium on Space Terahertz Technology, Groningen. April 28-30. 2008. P. 221-223.
  8. Schlecht E., Gill J., Dengler R., Lin R., Tsang R., Mehdi I. First Wideband 520-590 GHz Balanced Fundamental Schottky Mixer. 18th International Symposium on Space Terahertz Technology. California. 2007. P. 296.
  9. Treuttel J., Thomas B., Maestrini A., Wang H., Alderman B., Siles J.B., Davis S., Narhi T. A 380 GHz sub-harmonic mixer using MMIC foundry based Schottky diodes transferred onto quartz substrate. 20th International Symposium on Space Terahertz Technology, Charlottesville. April 20-22. 2009. P. 251-254.
  10. Yang F., Meng H.F., Duo W.B., Sun Z.L. Terahertz Sub-harmonic Mixer Using Discrete Schottky Diode for Planetary Science and  Remote Sensing. Journal of Infrared, Millimeter, and Terahertz Waves. 2017. V. 38(5). P. 630–637.
  11. Wilkinson P.R. Development of 664 GHz Sub-harmonic Mixers. 2014. April. P. 155.
  12. Chattopadhyay G., Schlecht E., Ward J., Gill J., Javadi H., Maiwald F., Mehendi I. An All-Solid-State Broad-Band Frequency Multiplier Chain at 1500 GHz. IEEE Transaction microwave theory and techniques. 2004. V. 52(2). P. 1538-1547.
  13. Maestrini A. Bridging the Microwave-to-Photonics Gap with Terahertz Frequtncy Multypliers. 2009. P. 25.
  14. Zhang B., Ji D., Min Y., Fan Y., Chen H. A High-Efficiency 220 GHz Doubler Based on Planar Schottky Varactor Diode. Journal of ELECTRONIC MATERIALS. 2019. V. 48(6). P. 3603-3611.
  15. Maestrini A., Thomas B., Wang H., Jung C., Treuttel J., Jin Y., Chattopadhyay G., Mehdi I., Beaudin G. Schottky diode based terahertz frequency multipliers and mixers. Comptes Rendus Physique. 2010. V.11. P. 480-495.
  16. Maestrini A., Ward J.S., Tripon-Canseliet C., Gill J.J., Lee C., Javadi H., Chattopadhyay G., Mehdi I. In-Phase Power-Combined Frequency Triplers at 300 GHz. IEEE Microw. Wireless Compon. Lett. 2008. V. 18(3). P. 218-220.
  17. http://ieeexplore.ieee.org/document/6251097/
  18. Kooi J.W., Walker C.K., Hesler J. A Broad Bandwidth Suspended Membrane Waveguide to Thin Film Microstrip Transition. 9th Int. Conference on Terahertz Electronics. 2001. October 15th-16th.
  19. Niu Z., Zhang B., Zhang L. S., Xing D., Wang J. L., Fan Y. A 0.66THz Subharmonic Mixer Using Planar Schottky Diodes. Asia-Pacific Microwave Conference (APMC). 2015.
  20. Tang A.Y., Drakinskiy V., Yhland K., Stenarson J., Bryllert T., Stake J. Analytical extraction of a Schottky diode model from broadband S-parameters. IEEE Transaction microwave theory and techniques. 2013. V. 61(5). P. 1870-1878.
Date of receipt: 17 марта 2020 г.