350 rub
Journal Radioengineering №4 for 2020 г.
Article in number:
Obtaining nanocomposites based on opal matrix and silicon-containing substances
Type of article: scientific article
DOI: 10.18127/j00338486-202004(8)-06
UDC: 535.3
Authors:

A.F. Belyanin – Dr.Sc. (Eng.), Professor, Head of Department, 

Central Research Technological Institute «Technomash» (Moscow) E-mail: belyanin@cnititm.ru

A.S. Bagdasaryan –Full Member of NAS of the Republic of Armenia,  Dr.Sc. (Eng.), Professor, Chief Research Scientist, 

Kotelnikov Institute of Radio-engineering and Electronics RAS (Moscow)

E-mail: bas@niir.ru

S.A. Bagdasaryan – Ph.D. (Eng.), General Director, Ltd Company «RFID&KS Technology» (Moscow)

E-mail: bagdassarian@mail.ru

S.A. Nalimov – Senior Research Scientist, 

Central Research Technological Institute «Technomash» (Moscow) E-mail: san@cnititm.ru

Abstract:

For the formation of three-dimensional nanocomposites, the introduction of various substances into the voids of the nanometer range of porous materials is promising. As a porous material with an ordered lattice of voids, opal matrices are widely used, which represent the correct packing of the same diameter (∆d ≈ 4–6%) spherical particles of amorphous SiO2, the diameters of which, depending on the formation conditions, can vary in the range 200–700 nm. The densest packing of spherical particles contains an ordered system of interconnected voids, occupying ~ 26% of the matrix volume. Various substances are introduced into the voids of the porous matrix mainly by synthesis directly in the voids. The creation of 3D lattices of crystallites of substances with sizes of 10–70 nm allows the formation of composite structures with characteristics unattainable for homogeneous materials.

The influence of the production conditions on the composition and structure of nanocomposites based on opal matrices in the voids of which various substances were synthesized was studied. The experimental part of the work was performed with samples of opal matrices with a volume of up to 1 cm3 with a diameter of SiO2 spherical particles of ~ 260 nm (∆d ≈ 4%). Nanocomposites were formed by repeatedly filling the voids of the opal matrices with solutions of salts or oxides and holding the samples at 670–720 K, after which the heat treatment was carried out at 970–1470 K. Chemical reactions and phase transformations in the voids of the opal matrices depended on the conditions of the heat treatment and also on the chemical properties of intermediate compounds, their thermal stability and ability to interact with SiO2. Ordered 3D nanocomposites based on opal matrices containing crystallites of substances formed by the interaction of material introduced into voids with SiO2 are obtained. Phase transformations, including crystallization of compounds of various types in voids of opal matrices, depended on temperature and duration of heat treatment. Changes in phase relations with a limited geometry of voids of opal matrices are illustrated by X-ray diffraction patterns and Raman spectra.

Pages: 59-68
References
  1. Mıguez H., Blanco A., Lopez C., Meseguer F., Yates H.M., Pemble M.E., Lopez-Tejeira F., Garcıa-Vidal F.J., Sanchez-Dehesa J. Face centered cubic photonic bandgap materials based on opal-semiconductor composites. Journal of lightwave technology. 1999. V. 17. № 11. Р. 1975–1981.
  2. Nishijima Y., Ueno K. Juodkazis S., Mizeikis V., Misawa H., Tanimura T., Maeda K. Inverse silica opal photonic crystals for optical sensing applications. Optics express. 2007. V. 15. № 20. P. 12979–12988.
  3. Tuyen L.D., Wu C. Y., Anh T. K., Minh L. Q.Kan H-C., Hsu C.C. Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals. Journal of experimental nanoscience. 2012. V. 7. № 2. P. 198–204. 
  4. Samoilovich M.I., Belyanin A.F., Bagdasaryan A.S., Bovtun V. Stroenie i dielektricheskie svojstva nanokompozitov: opalovye matricy – oksidy titana i titanaty redkozemel'nyh elementov. Tonkie himicheskie tekhnologii. 2016. T. 11. № 2. S. 66–73 (in Russian).
  5. Wijnhoven J., Willem L. Preparation of photonic crystals made of air spheres in titania. Science. 1998. V. 281. Р. 802–894.
  6. Belyanin A.F., Bagdasaryan A.S., Gulyaev Yu.V. Yurin A.I., Pavlyukova E.R. Stroenie, dielektricheskie i magnitnye svojstva nanokompozitov na osnove opalovyh matric, fosfatov i vanadatov metallov. Zhurnal radioelektroniki [elektronnyj zhurnal]. 2019. № 5. Rezhim dostupa: http://jre.cplire.ru/jre/may19/4/text.pdf (in Russian).
  7. Armstronga E., O’Dwyer C. Artificial opal photonic crystals and inverse opal structures – fundamentals and applications from optics to energy storage. Journal of materials chemistry C. 2015. V. 3. P. 6109–6143.
  8. Sarychev A.K., Shalaev V.M. Electrodynamics of metamaterials. World Scientific and Imperial College Press, 2007. 200 p.
  9. Kong J.A. Electromagnetic wave interaction with stratified negative isotropic media. Progress In Electromagnetics Research, PIER. 2002. V. 35. P. 1–52. 
  10. Belyanin A.F., Bagdasaryan A.S. Poluchenie i fizicheskie svojstva nanokompozitov: opalovye matricy – mul'tiferroidnye materialy. Naukoemkie tekhnologii. 2017. T. 18. № 9. S. 59–66 (in Russian). 
  11. Rinkevich A.B., Perov D.V. Electromagnetic field inhomogeneity in artificial crystals with ferrimagnetic particles. Doklady Physics. 2018. V. 63. № 7. P. 269–271. 
  12. Kimura T., Goto T., Shintani H., Ishizaka K., Amira T., Tokura Y. Magnetic control of ferroelectric polarization. Nature. 2003. V. 426. P. 55–58.
  13. Hill N.A. Why are there so few magnetic ferroelectrics?. The journal of physical chemistry B. 2000. V. 104 (29). P. 6694–6709.
  14. Inomata A., Kohn K. Pyroelectric effect and possible ferroelectric transition of helimagnetic GdMn2O5, TbMn2O5 and YMn2O5. Journal of physics condensed matter. 1996. V. 8. № 15. P. 2673–2678. 
  15. Perov D.V., Rinkevich A.B. Strong variation of microwave field inside opal-based artificial crystals. 11th International Congress on Engineered Material Platforms for Novel Wave Phenomena. Metamaterials. 2017. 11. 2017. Р. 289–291.
  16. Belyanin A.F., Samoylovich M.I., Jitkovsky V.D., Pashchenko P.V., Timofeev M.A., Kovalskij K.A., Kleshcheva S.M., Borisov V.V., Petukhov K.Yu. Sloistye nenakalivaemye katody. Nano- i mikrosistemnaya tekhnika. 2005. № 8. S. 39–48 (in Russian).
  17. Belyanin A.F., Bagdasaryan A.S., Bagdasaryan S.A., Borisov V.V., Pavlyukova E.R. Rentgenovskoe izluchenie pri lazernom vozdejstvii na opalovye matricy. Zhurnal radioelektroniki [elektronnyj zhurnal]. 2019. № 6. S. 15. Rezhim dostupa: http://jre.cplire.ru/jre/jun19/12/text.pdf (in Russian).
  18. Belyanin A.F., Borisov V.V., Bagdasaryan A.S. Nanostrukturirovannye uglerodnye materialy v emissionnoj elektronike. Rossijskij tekhnologicheskij zhurnal. – 2017. T. 5. № 3. – S. 22–40 (in Russian).
  19. Belyanin A.F., Bagdasaryan A.S., Gulyaev Yu.V., Sergeeva N.S., Bagdasaryan S.A., Pavlyukova E.R. Biosovmestimye nanomaterialy na osnove opalovyh matric. Zhurnal radioelektroniki [elektronnyj zhurnal]. – 2019. № 5. Rezhim dostupa: http://jre.cplire.ru/jre/may19/3/text.pdf (in Russian).
  20. Belov N.V. Struktura ionnyh kristallov i metallicheskih faz. M. Izd. AN SSSR. 1947. 237 s. (in Russian) 21. Landau L.D., Lifshic E.M. Statisticheskaya fizika. M.: Nauka, 1964, 567 s. (in Russian).
Date of receipt: 27 февраля 2020 г.