350 rub
Journal Radioengineering №3 for 2020 г.
Article in number:
The design feature of space-time processing algorithm of the signal in aerial HF ionospheric channel
Type of article: scientific article
DOI: 10.18127/j00338486-202003(06)-04
UDC: 621.396:621.391.82
Authors:

S.A. Metelev – Dr.Sc.(Phys.-Math.), Associate Professor, Head of Department, 

JSC «SPC «Polyot» (N. Novgorod)

E-mail: metelev55@mail.ru

E.N. Volkova – Leading  Engineer, 

JSC «SPC «Polyot» (N. Novgorod)

Abstract:

The use of phase telegraphy signals in aeronautical channels with a large Doppler shift requires either compensation for this shift by automatic frequency control systems or the use of radiation classes with relative phase telegraphy that are invariant to frequency shift. The appearance of powerful interference in the band of the useful signal (random or intentional) requires the use of methods to combat them, which include reception on diversity antennas and spatial signal processing. Since modern high-speed shortwavelength communication channels are based on phase telegraphy signals, the urgent task is to develop an algorithm for spatial signal processing for such signals transmitted through fluctuating multipath channels in the presence of a large Doppler frequency shift of the carrier oscillation under impact interference.

The article proposes a new algorithm for spatial signal processing for signals with phase telegraphy based on the model for generating signals from spaced antennas in an HF aviation radio channel.

Using the method of simulation, the potential possibilities of spatial noise compensators in the aviation channel with scattering and Doppler frequency shift are determined. Using the proposed modified model of the HF airborne radio communication channel, we investigated the spatial processing algorithm for signals received under high-power interference in discrete channels with phase telegraphy, which is invariant to the Doppler frequency. The algorithm is based on the use of an additional channel for processing signalnoise mixtures according to the frequency telegraphy algorithm, measuring the frequency of the emitted signal oscillation, and using a voltage controlled oscillator to generate a local oscillator oscillation in the main receiving channel.

The modification of the stationary Gaussian aerial HF ionospheric channel model is proposed. This model is assigned for testing of the space-time processing (STP) algorithms and STP devices.By comparison with experimental data the adequacy of model is demonstrated. By using this model the achievable capability of STP cancellers are determined. Simulation results show the possibility of increasing noise immunity in good and medium channels according to the Waterson model to the required level.

Pages: 32-40
References
  1. Metelev S.A., Shishkin Yu.V. Optimalnyi prostranstvennyi razdelitel signalov i pomekh v kanalakh radiosvyazi. Ch. 1. Chislennoe modelirovanie. Izvestiya VUZov. Radiofizika. 1997. T. 40. № 3. S. 378−395. (in Russian)
  2. Metelev S.A. Ob effektivnosti raboty prostranstvennykh separatorov signala i pomekh, postroennykh po kriteriyu srednei kvadratichnoi oshibki. Izvestiya VUZov. Radiofizika. 2000. T. 43. № 3. S. 250−263. (in Russian)
  3. Metelev S.A., Shishkin Yu.V. Printsip postroeniya dvukhkanalnogo prostranstvennogo separatora signala i pomekhi s predvaritelnym ortonormirovaniem vkhodnykh protsessov. Izvestiya VUZov. Radiofizika. 2000. T. 43. № 2. S. 130−143. (in Russian)
  4. Metelev S.A. Vliyanie mnogoluchevosti na effektivnost kompensatsii pomekh v adaptivnykh antennykh sistemakh KV-diapazona. Izvestiya VUZov. Radiofizika. 2000. T. 43. № 1. S. 45−58. (in Russian)
  5. Metelev S.A., Lvov A.V. Otsenka potentsialnoi pomekhoustoichivosti radiopriema s prostranstvennoi obrabotkoi signalov v mnogoluchevykh kanalakh radiosvyazi. Ch. 1. Dekametrovyi diapazon. Izvestiya vuzov. Radiofizika. 2016. T. 59. № 4. S. 364. (in Russian)
  6. Okunev Yu.B. Tsifrovaya peredacha informatsii fazomanipulirovannymi signalami. M.: Radio i svyaz. 1991. 296 s. (in Russian)
  7. Metelev S.A., Volkova E.N., Shishkin Yu.V. Issledovaniya effektivnosti algoritma adaptivnogo prostranstvennogo separatora FT signala i pomekhi. Trudy VI Mezhdunar. nauchno-tekhnich. konf. «Radiolokatsiya, navigatsiya i svyaz». g. Voronezh. 2000. T. 2. S. 1131−1139. (in Russian)
  8. Watterson C.; Juroshek J.; Bensema W. Experimental Confirmation of an HF Channel Model. IEEE Transactions on Communication Technology. December 1970. V. 18. № 6. P. 792−803.
  9. CCIR Recommendation 520-1 19821. «Use of High Frequency Ionospheric Channel Simulators». ITU. Geneva C.J. Kaufman. Rocky Mountain Research Lab, Boulder, CO. Private communication, May 1995.
  10. ITU-R Rec. F1487. «Testing of HF Modems with Bandwidth of up to about 12 kHz Using Ionospheric Channel Simulator». International Telecommunication Union. Radiocommunication Sector. Geneva 2000.
  11. Metelev S.A. Modifikatsiya modeli Vatersona ionosfernogo kanala korotkovolnovoi radiosvyazi dlya adaptivnogo prostranstvenno raznesennogo priema. Izvestiya VUZov. Radiofizika. 2012. T. 55. № 4. S. 266. (in Russian)
Date of receipt: 12 февраля 2019 г.