350 rub
Journal Radioengineering №3 for 2020 г.
Article in number:
Structural adaptation of telecommunication systems with ensuring admissible information losses
Type of article: scientific article
DOI: 10.18127/j00338486-202003(05)-04
UDC: 621.396.2
Authors:

A.M. Mezhuev – Ph.D.(Eng.), Associate Professor, Head of Department, 

MESC «Zhukovsky–Gagarin Air Force Academy» (Voronezh)

E-mail: multitenzor@mail.ru

A.V. Korennoi – Honored Scientist of RF, Dr.Sc.(Eng.), Professor, 

Department №122, MESC «Zhukovsky–Gagarin Air Force Academy» (Voronezh)

E-mail: korennoj@mail.ru

D.L. Sturov – Post-graduate Student, 

MESC «Zhukovsky–Gagarin Air Force Academy» (Voronezh)

E-mail: 777dmitry.sturov777@gmail.com

Abstract:

Article is devoted of development of a method of structural adaptation of telecommunication systems to conditions of the unstable input traffic of high intensity and influence of destabilizing factors.

During researches accurate structuration of an offered method on the basic stages of its implementation is realized. For estimation of information system effectiveness the new system of the generalized indicators is applied in which basis lies the indicator of information transfer performance coefficient. Support of admissible information losses is reached by control of increments of performance coefficient of information transfer on the input traffic – a tangent of angle of efficiency banded. For formation of a database of reserve topology the mathematical apparatus of the spectral theory of graphs is applied, allowing by the adaptive change of structural redundancy of basic topology of telecommunication system to receive alternative variants cospectral structures with demanded characteristics of topological stability. The registration of influence of destabilizing factors on telecommunication system functioning at network layer is carried out with application of tensor methodology on the basis of the orthogonal model uniting three spaces: static space-structure of system and two dynamic spaces of information and interfering traffics.

The accounting of influence of destabilizing factors is practiced out with application of tensor methodology on the basis of the orthogonal model uniting three spaces: static space-structure of system and two dynamic spaces of information and interfering traffic. Complex multi-circuit character of procedures of adaptation with involvement of mechanisms of algorithmic and parametric contours is shown. The developed algorithmic and the software in the form of imitating and analytical models of an information exchange of the telecommunication system. Results of modeling have confirmed working capacity of the received method.

Results of modeling have confirmed serviceability of the received method of structural adaptation in the conditions of the unstable input traffic of high intensity and destabilizing actions. It is defined by essential increase of performance coefficient of information transfer of system and the substantial growth of bandpass on the input traffic that, in turn, provides maintenance of information efficiency and demanded stable conditions of telecommunication system by the given criterion during a long interval of functioning. Practical recommendations about usage received algorithmic and the software on the basis of the developed method of structural adaptation in operation of the controller of system of monitoring and control of telecommunication system operation are formulated.

Pages: 29-39
References
  1. Kim B.S., Fang Y., Wong T.F. Rate-adaptive MAC protocol in high-rate personal area networks. Proc. of IEEE WCNC. March 2004. P. 1394−1399.
  2. Miguel López-Benítez, Javier Gozálvez. Link adaptation algorithms for improved delivery of delay- and error-sensitive packet-data services over wireless networks. Wireless Networks. April 2010. V. 16. № 3. P. 593−606.
  3. Golovin O.V., Prostov S.P. Sistemy i ustroistva korotkovolnovoi radiosvyazi. M.: Goryachaya liniya – Telekom. 2006. 600 s.
  4. Julian D., Chiang M., O’Neill D., Boyd S. QoS and fairness constrained convex optimization of resource allocation for wireless cellular and ad hoc networks. Proc. IEEE Infocom Conf. June 2002. P. 477−486.
  5. Mezhuev A.M. Sovmestnoe reshenie zadach algoritmicheskoi i strukturnoi adaptatsii v infokommunikatsionnykh sistemakh. Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli (SPb.: Izdatelskii dom «Media pablisher»). 2015. T. 7. № 6. S. 36−43.
  6. Tsvetkovich D., Dub M., Zakhs Kh. Spektry grafov. Teoriya i primenenie. Kiev: Naukova dumka. 1984. 384 s.
  7. Butler S., Chung F. Spectral graph theory. In Handbook of Linear Algebra. Edition 2nd.. Ed. L. Hogben: CRC Press. 2017. 1904 p.
  8. Mezhuev A.M., Korennoi A.V., Pasechnikov I.I. Metod formirovaniya strukturno ustoichivykh i informatsionno effektivnykh setevykh informatsionnykh sistem. Radiotekhnika. 2019. № 4. S. 84−94. DOI 10.18127/j00338486-201904-12.
  9. Prikladnye zadachi navigatsii, svyazi i upravleniya. Metody analiza i sinteza. Pod red. A.V. Korennogo. M.: Radiotekhnika. 2015. 160 s.
  10. Mezhuev A.M., Pasechnikov I.I., Korennoi A.V. Analiz funktsii effektivnosti informatsionnoi seti i algoritm otsenki rezhimov informatsionnogo obmena na osnove proizvodnykh obobshchennogo pokazatelya. Elektromagnitnye volny i elektronnye sistemy. 2017. № 5. S. 12−22.
  11. Mezhuev A.M. Algoritmy preobrazovaniya bazovykh struktur setevykh informatsionnykh sistem i metod nakhozhdeniya kospektralnykh struktur vysokoi ustoichivosti. Informatsionno-izmeritelnye i upravlyayushchie sistemy. 2019. № 3. S. 66−74. DOI 10.18127/j20700814-201903-08.
  12. Mezhuev A.M., Pasechnikov I.I., Korennoi A.V. Tenzornaya ortogonalnaya model s uchetom vliyaniya pomekhovoi obstanovki pri otsenke informatsionnoi effektivnosti infokommunikatsionnykh setei. Radiotekhnika. 2018. № 10. S. 96−108. DOI 10.18127/j00338486-201810-13.
  13. ITU-T Recommendation Y.1541 Network Performance Objectives for IP-Based Services. May 2002.
  14. ITU-T Recommendation E.802 Overall network operation, telephone service, service operation and human factors. February 2007.
  15. Donovan Alan A.A., Brian W. Kernigha. The Go Programming Language. Addison-Wesley Professional computing series. NY. 2016. 400 r.
  16. Borshchev A. The Big Book of Simulation Modeling. Multimethod modeling with AnyLogic 6. AnyLogic North America. 2013. 614 p.
Date of receipt: 15 января 2020 г.