350 rub
Journal Radioengineering №2 for 2020 г.
Article in number:
Modeling and control of a grounded technical vision system
Type of article: scientific article
DOI: 10.18127/j00338486-202002(04)-09
UDC: 355.351.4: 519.876.2
Authors:

S.S. Zwierzynski – Dr.Sc.(Eng.), Professor, 

Moscow Technical University of Communication and Informatic

I.V. Parfentsev – Ph.D.(Eng.), Associate Professor, Specialist, 

JSC «STT Group» (Moscow)

D.G. Lvov – Head of R&D Department

JSC «Dedal» (Dubna, Moscow Region)

Abstract:

The article substantiates a single phenomenological approach to functional effectiveness estimation of various technical vision systems (TVS) - radar, thermal imaging and video surveillance, designed to protect geographically distributed object perimeters. The approach is based on system detection ability similarity, characterized by one parameter R0 - conditional boundary between near and far zones.

Within the framework of this approach, “detection”, “recognition” and “identification” TVS-conceptions are refined, where the second conception is the key. It is shown that effective target detection / recognition range is approximately two times higher than R0. When target distance changes from R0 to 2R0, the quality of TVS decreases from “reliable” (corresponding to probability 0.7) to “random” (corresponding to probability 0.3). Estimating expressions for length surveyed perimeter at effective range distance are obtained; these estimations depending only on target linear size and TVS optoelectronic matrix format.

Based on obtained expressions, recommendations to subbands for simultaneous visual and thermal imaging intruder detection / recognition with the same quality were developed. It provides rational equipment installation on the ground. An example of corresponding calculations for the domestic TVS “Kiver-M” is given.

Conclusions for optoelectronic TVS parameter optimizing are drawn. It has been shown that “narrow” and “ultra-wide” fields of view (FOV) for searching / detecting targets are inefficient. It is preferable to use a “wide” FOV for target searching, and a “middle” for recognition; it’s important to realize these FOVs at the same distances. Because at night video camera is inoperative, it’s rational to install TVS at a distance about 400 m from monitored perimeter conditional line in order to ensure reliable target IR detection in "wide" FOV, and its recognition in "middle" field. During the day, with camera left/right turning, reliable contrast target video detection can be carried out in "wide" and "average" FOVs at ranges up to 4 km, recognition - at ranges up to 1.0 km. “Narrow” FOV using increases reliable range of target recognition (for example, a person / animal) up to 4.0 km.

These recommendations can improve effectiveness of TVS, using for large object perimeter protection.

Pages: 52-58
References
  1. Torokin A.A. Inzhenerno-tekhnicheskaya zashchita informatsii. M.: Gelios-ARV. 2005. 960 s. (in Russian)
  2. Zvezhinskii S.S., Parfentsev I.V. Obnaruzhenie i raspoznavanie narushitelei v optoelektronnykh sistemakh obnaruzheniya. Radiotekhnika. 2010. № 2. S. 63−67. (in Russian)
  3. Studitskii A.S. Issledovanie i razrabotka mnogofunktsionalnogo optiko-elektronnogo sredstva nablyudeniya i razvedki. Dis. … kand. tekhn. nauk. M: NPO «Spektr». 2013. 112 s. (in Russian)
  4. Standarty identifikatsii, raspoznavanii i detektirovanii lyudei. OOO «NPO «Infotekh». 2017. (in Russian)
  5. Epifantsev B.N., Pyatkov A.A., Kopeikin S.A. Multisensornye sistemy monitoringa territorii ogranichennogo dostupa: Vozmozhnosti videoanaliticheskogo kanala obnaruzheniya. Kompyuternaya tekhnika. 2016. T. 40. № 1. S. 121−127. (in Russian)
  6. Radiotekhnologii protivodeistviya terroristicheskim ugrozam: kollektivnaya monografiya. Pod red. V.I. Esipenko. M.: Radiotekhnika. 2016. 168 s. (in Russian)
  7. Grudinskaya G.P. Rasprostranenie radiovoln. M.: Vysshaya shkola. 1975. 280 s. (in Russian)
  8. Richards O. Teplovidenie: kak daleko vy mozhete videt s nim. www.flir.com. (in Russian)
  9. Ovsyannikov V.A. i dr. K voprosu ob obnaruzhenii, raspoznavanii i identifikatsii posredstvom teplovizionnogo pribora rostovoi figury cheloveka. Prikladnaya fizika. 2005. № 1. S. 112−114. (in Russian)
  10. Magauenov R.G. Sistemy okhrannoi signalizatsii: osnovy teorii i printsipy postroeniya. M.: Goryachaya liniya-Telekom. 2017. 493 s. (in Russian)
  11. Thermal network cameras: Performance considerations for video analytics. AXIS white paper 67679/ EN /R1/1605. 2016. 10 p.
  12. Gorbunov V.A. Effektivnost obnaruzheniya tselei. M.: Voenizdat. 1979. 160 s. (in Russian)
  13. Zvezhinskii S.S., Parfentsev I.V., Prokudin O.A. Funktsionalnaya effektivnost avtomatizirovannogo vizualnogo poiska s pomoshchyu podvizhnogo nositelya. Radiotekhnika. 2015. № 3. S. 47−50. (in Russian) 14. www.dedal.ru.
Date of receipt: 12 января 2020 г.